On global anomalies of heterotic string theories

Yuji Tachikawa (Kavli IPMU)

Quantum Space-Time Seminar

June 7, 2021

Introduction

String theorists often say
String theory is miraculously free of inconsistency
and/or
String theory is the only consistent theory of quantum gravity

Are you really sure?

Really?

Today I would like to discuss global anomalies of perturbative heterotic string theories.

It sounds esoteric.
But no, actually it isn't.

Recall Witten's $\boldsymbol{S} \boldsymbol{U}(\mathbf{2})$ anomaly.
In 4d, there is a nontrivial large gauge transformation associated to

$$
\pi_{4}(S U(2))=\mathbb{Z}_{2}
$$

If you have $\boldsymbol{N}_{\mathbf{2}}$ doublet Weyl fermions, this produces a phase

$$
(-1)^{N_{2}} .
$$

More generally, with $\boldsymbol{N}_{\boldsymbol{k}}$ Weyl fermions in the \boldsymbol{k}-dim'l irrep of $\boldsymbol{S U (2)}$, the anomaly is

$$
(-1)^{N_{2}+N_{6}+N_{10}+\cdots}
$$

Let us now ask:
Is Witten's $\boldsymbol{S U (2)}$ anomaly absent in $4 d$ heterotic compactifications?

The worldsheet theory consists of

	c_{L}	c_{R}
(super)ghosts	-26	-15
$X^{\mathbf{0 , 1 , 2 , 3}}, \bar{\psi}^{\mathbf{0 , 1 , 2 , 3}}$	4	6
internal CFT	22	9

My convention is that the right-movers are supersymmetric.

Massless fermions come from states of the internal CFT where:

- The right-movers are put into R-sector,
- Massless fermions are those with $\left(\boldsymbol{L}_{0}, \bar{L}_{\mathbf{0}}\right)=(\mathbf{1}, \mathbf{0})$,
- $(-1)^{F_{R}}$ translates to the spacetime chirality via GSO.

So the question is:

Take an $\boldsymbol{S U (2)}$-symmetric $\boldsymbol{\mathcal { N }}=\mathbf{(0 , 1)}$ SCFT with $\left(c_{L}, c_{R}\right)=(22,9)$.

Let $\boldsymbol{N}_{\boldsymbol{k}}$ be the number of states in the \boldsymbol{k}-dim'l irrep of $\boldsymbol{S U (2)}$
with $\left(\boldsymbol{L}_{\mathbf{0}}, \overline{\boldsymbol{L}}_{\mathbf{0}}\right)=(\mathbf{1}, \mathbf{0})$ in the R-sector.
Is $(-1)^{N_{2}+N_{6}+N_{10}+\cdots}=+1 ?$

This is a nontrivial question which I don't know how to address using our standard toolkit.

I learned this question from [Enoki-Sato-Watari 2005.01069], written by my colleagues in IPMU.

Or more precisely, during a chat during one of the last tea time before the pandemic, when they were working on that paper.

They studied this question assuming that there are $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{2}$ spacetime SUSY, and showed that the anomaly vanishes in many cases.

They couldn't find any counterexample, but they didn't find a proof either.

My point today is that the mathematical theory of topological modular forms can address this question, assuming the validity of the Segal-Stolz-Teichner conjecture.

The list of hep-th papers on tmf is not very long.
The exhaustive list is

Gaiotto, Johnson-Freyd	1811.00589
Gukov, Pei, Putrov, Vafa	1811.07884
Gaiotto, Johnson-Freyd, Witten	1902.10249
Gaiotto, Johnson-Freyd	1904.05788
Johnson-Freyd	2006.02922
YT	2103.12211

It's a young field and new comers are welcomed...
(Texts in purple is hyperlinked if you download the slides.)

Take an $\boldsymbol{S U (2)}$-symmetric $\boldsymbol{\mathcal { N }}=\mathbf{(0 , 1) S C F T}$
with $\left(c_{L}, c_{R}\right)=(22,9)$.
Let $\boldsymbol{N}_{\boldsymbol{k}}$ be the number of states in the \boldsymbol{k}-dim'l irrep of $\boldsymbol{S U (2)}$ with $\left(\boldsymbol{L}_{0}, \bar{L}_{0}\right)=(\mathbf{1}, \mathbf{0})$ in the R-sector.

IS $(-1)^{N_{2}+N_{6}+N_{10}+\cdots}=+1$?

Although I am going to concentrate on the approach using tmf, I believe this question should also have a more conventional answer.

Please come up with one.

Green-Schwarz mechanism

I would like to start with some refresher.
Superstring theory as we know it started with Green-Schwarz (1984).
In $10 \mathrm{~d} \boldsymbol{\mathcal { N }}=1$ supergravity theory, the anomaly polynomial of the fermions factorizes:

$$
I_{12}=I_{4} I_{8}, \quad I_{4}=\operatorname{tr} R^{2}-\operatorname{tr} F^{2}
$$

if

$$
G=S O(32) \quad \text { or } \quad \boldsymbol{E}_{8} \times \boldsymbol{E}_{8}
$$

(I put all nontrivial coefficients into the normalization of tr.)

We posit that the gauge-invariant field strength \boldsymbol{H} of the \boldsymbol{B} field is

$$
H=d B+C S(\omega)-C S(A)
$$

where $\boldsymbol{\omega}$ is the spin connection, \boldsymbol{A} is the gauge field, $\boldsymbol{C S}$ is the Chern-Simons form, such that

$$
d H=I_{4}=\operatorname{tr} R^{2}-\operatorname{tr} F^{2}
$$

This makes \boldsymbol{B} transform nontrivially under both

- the general coordinate transformation
- and the \boldsymbol{G} gauge transformation.

We also posit the interaction

$$
-\int_{M_{10}} B \wedge I_{8}
$$

This produces the anomaly

$$
-(d H) \boldsymbol{I}_{8}=-\boldsymbol{I}_{4} \boldsymbol{I}_{8}
$$

cancelling the anomaly from the fermions, which was $\boldsymbol{I}_{12}=\boldsymbol{I}_{\mathbf{4}} \boldsymbol{I}_{\mathbf{8}}$.
The explicit form of $\boldsymbol{I}_{\mathbf{8}}$ is complicated ...

Let's look up Polchinski ...

12.2 Anomalies

$$
101
$$

The chiral fields of $N=1$ supergravity with gauge group g are the gravitino 56, a neutral fermion 8^{\prime}, and an 8 gaugino in the adjoint representation, for total anomaly

$$
\begin{align*}
\hat{I}_{\mathrm{I}}= & \hat{I}_{56}\left(R_{2}\right)-\hat{I}_{8}\left(R_{2}\right)+\hat{I}_{8}\left(F_{2}, R_{2}\right) \\
= & \frac{1}{1440}\left\{-\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{6}\right)+\frac{1}{48} \operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right) \operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{4}\right)-\frac{\left[\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right)\right]^{3}}{14400}\right\} \\
& \quad+(n-496) \frac{\operatorname{tr}\left(R_{2}^{6}\right)}{725760}-\frac{Y_{4} X_{8}}{384} \tag{12.2.27}
\end{align*}
$$

Here

$$
\begin{align*}
& Y_{4}=\operatorname{tr}\left(R_{2}^{2}\right)-\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right), \tag{12.2.28a}\\
& X_{8}=\operatorname{tr}\left(R_{2}^{4}\right)+\frac{\left[\operatorname{tr}\left(R_{2}^{2}\right)\right]^{2}}{4}-\frac{\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right) \operatorname{tr}\left(R_{2}^{2}\right)}{30}+\frac{\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{4}\right)}{3}-\frac{\left[\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right)\right]^{2}}{900} \tag{12.2.28b}
\end{align*}
$$

Let's look up Polchinski ...

12.2 Anomalies

101
representation, for total anomaly

$$
\begin{align*}
& \hat{I}_{\mathrm{I}}= \hat{I}_{56}\left(R_{2}\right)-\hat{I}_{8}\left(R_{2}\right)+\hat{I}_{8}\left(F_{2}, R_{2}\right) \\
&=\frac{1}{1440}\left\{-\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{6}\right)+\frac{1}{48} \operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right) \operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{4}\right)-\frac{\left[\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right)\right]^{3}}{14400}\right\} \\
&+(n-496)\left\{\frac{\operatorname{tr}\left(R_{2}^{6}\right)}{725760}+\frac{\operatorname{tr}\left(R_{2}^{4}\right) \operatorname{tr}\left(R_{2}^{2}\right)}{552960}+\frac{\left[\operatorname{tr}\left(R_{2}^{2}\right)\right]^{3}}{1327104}\right\}+\frac{Y_{4} X_{8}}{768} . \tag{12.2.27}
\end{align*}
$$

Here

$$
\begin{align*}
& Y_{4}=\operatorname{tr}\left(R_{2}^{2}\right)-\frac{1}{30} \operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right), \\
& X_{8}=\operatorname{tr}\left(R_{2}^{4}\right)+\frac{\left[\operatorname{tr}\left(R_{2}^{2}\right)\right]^{2}}{4}-\frac{\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right) \operatorname{tr}\left(R_{2}^{2}\right)}{30}+\frac{\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{4}\right)}{3}-\frac{\left[\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right)\right]^{2}}{900} . \tag{12.2.28b}
\end{align*}
$$

Anyway, perturbative anomaly is cancelled in 10d.
Therefore, it is cancelled also in heterotic compactifications to lower dimensions, if the internal manifold is geometric and smooth

But the internal CFT can be non-geometric.

For example, in geometric compactifications to 2 d , we can at most have $\mathcal{N}=(8,8)$ susy.

But there are asymmetric orbifolds which give $\mathcal{N}=(\mathbf{1 6}, \mathbf{0})$ susy, for example.
[Melnikov-Minasian-Sethi 1707.04613]
[Florakis, García-Etxebarria, Lust, Regalado 1712.04318]

You can ask:

> Is perturbative anomaly automatically canceled in
> heterotic compactifications even when
> the internal CFT is non-geometric?

The answer is yes.
Lerche-Nilsson-Schellekens-Warner (1988)
Their derivation is quite ingenuous.
Unfortunately I don't have time to review that.

What about the global anomalies?
In $10 \mathrm{~d} \boldsymbol{E}_{8} \times \boldsymbol{E}_{8}$, it was shown to vanish in Witten's "Topological tools in ten dimenions" (1986).

This implies that it also vanishes in all geometric compactifications.
But again, there can be non-geometric compatifications, where the gauge symmetry and/or charged fermions can arise from stringy mechanism.

So, let us study them.
But this is a bit tricky because of the GS mechanism. Due to

$$
d H=\operatorname{tr} R^{2}-\operatorname{tr} F^{2}
$$

the gauge transformations of \boldsymbol{B}, gravity and \boldsymbol{G} gauge fields mix.
Setting $\boldsymbol{F}=\mathbf{0}$ helps, because we have one less ingredient.
So, let us study an anomaly of \boldsymbol{B} and gravity, rather than $4 \mathrm{~d} \boldsymbol{S} \boldsymbol{U}(\mathbf{2})$ anomaly, from which I started the talk.

A global anomaly in 2d

Let us consider heterotic compactification to 2 d .
The worldsheet theory consists of

	$c_{\boldsymbol{L}}$	$c_{\boldsymbol{R}}$
(super)ghosts	$-\mathbf{2 6}$	$-\mathbf{1 5}$
$\boldsymbol{X}^{\mathbf{0 , 1}}, \bar{\psi}^{\mathbf{0 , 1}}$	$\mathbf{2}$	$\mathbf{3}$
internal CFT	24	12

Massless fermions in the spacetime theory come from states of internal CFT where:

- The right-movers are put into R-sector,
- Massless spin- $\frac{1}{2}$ fermions are those with $\left(L_{0}, \bar{L}_{0}\right)=(1,0)$,
- Massless gravitinos are those with $\left(\boldsymbol{L}_{0}, \bar{L}_{0}\right)=(\mathbf{0}, \mathbf{0})$,
- $(\mathbf{- 1})^{\boldsymbol{F}_{R}}$ translates to the spacetime chirality via GSO.

The total fermion anomaly polynomial is then

$$
\boldsymbol{I}_{4}=\left(-\mathbf{2 4}\left(N_{\text {gravitino }}^{+}-N_{\text {gravitino }}^{-}\right)+\left(N_{1 / 2}^{+}-N_{1 / 2}^{-}\right)\right)\left(-\frac{p_{1}}{48}\right)
$$

where $p_{1}=\frac{1}{2} \operatorname{tr}\left(\frac{R}{2 \pi}\right)^{2}$.
The elliptic genus of the internal CFT is

$$
\begin{aligned}
Z_{\mathrm{ell}}(q) & =\operatorname{tr}_{R}(-1)^{F_{R}} q^{L_{0}-c_{L} / 24} \bar{q}^{\overline{L_{0}}} \\
& =a q^{-1}+b+O\left(q^{1}\right)
\end{aligned}
$$

where

$$
a=N_{\text {gravitino }}^{+}-N_{\text {gravitino }}^{-}, \quad b=N_{1 / 2}^{+}-N_{1 / 2}^{-} .
$$

String one-loop perturbation theory automatically generates the \boldsymbol{B}-field one point function

$$
2 \pi i N \int B
$$

where

$$
N=\frac{1}{8 \pi} \int_{\text {fund.dom. of } S L(2, \mathbb{Z})} Z_{\mathrm{ell}}(q) \frac{d x d y}{y^{2}}, \quad(\tau=x+i y)
$$

which gives

$$
N=-a+\frac{b}{24}
$$

[Vafa-Witten hep-th/9505053]
[Sen hep-th/9604070]

Summary so far

When the elliptic genus of the internal CFT is

$$
Z_{\mathrm{ell}}(q)=a q^{-1}+b+O\left(q^{1}\right)
$$

the fermion anomaly is

$$
I_{4}=(-24 a+b)\left(-\frac{p_{1}}{48}\right)
$$

while the \boldsymbol{B}-field coupling is

$$
2 \pi i\left(-a+\frac{b}{24}\right) \int B
$$

Since

$$
d H=\frac{p_{1}}{2}
$$

the two contributions to the anomaly cancel out.

The \boldsymbol{B}-field coupling

$$
2 \pi i\left(-a+\frac{b}{24}\right) \int B
$$

still poses a problem when $b / \mathbf{2 4} \notin \mathbb{Z}$, since it transforms nontrivially under the large gauge transformation

$$
B \rightarrow B+1
$$

As b is naturally an integer, this is $\mathbb{Z}_{\mathbf{2 4}}$ global anomaly.

The central question can now be formulated as follows:

Take an $\boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1})$ SCFT with $\left(c_{L}, \boldsymbol{c}_{\boldsymbol{R}}\right)=(\mathbf{2 4}, \mathbf{1 2)}$.
Let's say its elliptic genus is $\boldsymbol{Z}_{\text {ell }}=a \boldsymbol{q}^{\mathbf{1}}+b+\boldsymbol{O}\left(\boldsymbol{q}^{\mathbf{1}}\right)$.
Is b always divisible by $\mathbf{2 4}$?

Again I don't know how to approach this question in the standard manner.

You can go over various 2d compactifications studied in
[Sen hep-th/9604070],
[Font, López hep-th/0405151],
[Florakis, Garcia-Etxebarria, Lust, Regalado 1712.04318].
You find that all have b divisible by 24 .
How do we show this in general?
Here comes topological modular forms to the rescue.
But we need to recall modular forms first.

Modular forms

Modular forms are useful in constraining the elliptic genus of a 2 d theory.
Take a $2 \mathrm{~d} \boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1})$ theory \boldsymbol{T}. Its elliptic genus is

$$
Z_{\mathrm{ell}}(T ; q)=\operatorname{tr}_{R}(-1)^{F_{R}} q^{L_{0}-c / 24} \bar{q}^{\bar{L}_{0}}
$$

$Z_{\text {ell }}(T ; q)$ is the partition function of the theory on $\boldsymbol{T}^{\mathbf{2}}$ with the periodic spin structure.

Therefore, $\boldsymbol{Z}_{\text {ell }}(T ; \boldsymbol{q})$ is modular invariant, roughly speaking.
But this is only true up to a subtle phase which is a 24-th root of unity, due to the gravitational anomaly.

Given a $2 \mathrm{~d} \boldsymbol{\mathcal { N }}=(0,1)$ theory T with $2\left(c_{R}-c_{L}\right)=\nu$, it is useful to add ν left-moving fermions, to cancel the anomaly.

But the total elliptic genus is zero, due to the fermion zero modes.
We add ν fermion insertions to absorb them. What we have is then

$$
\phi_{W}(T ; q):=\eta(q)^{\nu} Z_{\mathrm{ell}}(T ; q)
$$

where

$$
\eta(q)=q^{1 / 24} \prod_{n}\left(1-q^{n}\right)
$$

(In the theory of topological modular forms, ϕ_{W} is called the Witten genus.)

This combination

$$
\phi_{W}(T ; q):=\eta(q)^{\nu} Z_{\mathrm{ell}}(T ; q)
$$

does not have anomalous phases (which are 24th roots of unity) under the modular transformation.

The price we paid is that

$$
\phi_{W}\left(T ; \frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{\nu / 2} \phi_{W}(T ; \tau)
$$

This transformation law defines a modular form of weight $\boldsymbol{\nu} / \mathbf{2}$.

A modular form of weight w is a function f on $\tau=x+i y, y>0$, such that

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{w} f(\tau)
$$

Usually mathematicians require modular forms to be finite when

$$
q=e^{2 \pi i \tau} \rightarrow 0
$$

Then:

$$
\{\text { modular forms }\}=\mathbb{C}\left[\boldsymbol{E}_{4}, \boldsymbol{E}_{6}\right]
$$

where

$$
E_{k}=\sum_{(n, m) \neq 0} \frac{1}{(n \tau+m)^{k}}
$$

is the Eisenstein series of weight \boldsymbol{k}.

Our $\phi_{\boldsymbol{W}}(\boldsymbol{T} ; \boldsymbol{q})$ can have poles at $\boldsymbol{q} \rightarrow \mathbf{0}$. For this purpose we use

$$
\Delta(q):=\eta(q)^{24}=q+O\left(q^{2}\right)
$$

So
$\left\{\begin{array}{c}\text { modular forms } \\ \text { allowing poles at } \boldsymbol{q}\end{array}\right\}=\mathbb{C}\left[\boldsymbol{E}_{\mathbf{4}}, \boldsymbol{E}_{\mathbf{6}}, \Delta^{-1}\right]$.

Our $\phi_{W}(T ; q)$ has integer coefficients in \boldsymbol{q}-expansions.
It is known that

$$
\left\{\begin{array}{c}
\text { modular forms with } \\
\text { integer coefficients }
\end{array}\right\}=\frac{\mathbb{Z}\left[c_{4}, c_{6}, \Delta\right]}{c_{4}^{3}-c_{6}^{2}=\mathbf{1 7 2 8 \Delta}}
$$

where
$c_{4}=\frac{45}{\pi^{4}} E_{4}=1+240 q^{2}+\cdots, \quad c_{6}=\frac{945}{2 \pi^{6}} E_{6}=1-504 q^{2}+\cdots$,
so
$\left\{\begin{array}{c}\text { modular forms with } \\ \text { integer coefficients and poles }\end{array}\right\}=\frac{\mathbb{Z}\left[c_{4}, c_{6}, \Delta, \Delta^{-1}\right]}{c_{4}^{3}-c_{6}^{2}=\mathbf{1 7 2 8 \Delta}}$.

We come back to our original question:

Take an $\boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1})$ SCFT with $\left(c_{L}, \boldsymbol{c}_{\boldsymbol{R}}\right)=(\mathbf{2 4}, \mathbf{1 2)}$.
Let's say its elliptic genus is $\boldsymbol{Z}_{\text {ell }}=a \boldsymbol{q}^{\mathbf{1}}+b+\boldsymbol{O}\left(\boldsymbol{q}^{\mathbf{1}}\right)$.
Is b always divisible by $\mathbf{2 4}$?

Since $\nu=2\left(c_{R}-c_{L}\right)=\mathbf{- 2 4}$, we consider

$$
\phi_{W}(T ; q)=\eta(q)^{-24} Z_{\mathrm{ell}}(T ; q)=\Delta^{-1}\left(a q^{-1}+b+\cdots\right)
$$

This is a modular form of weight $\mathbf{- 1 2}$ with integer coefficients and poles of order at most $\mathbf{2}$. From this we conclude

$$
\begin{aligned}
\phi_{W}(T ; q) & =a c_{4}^{3} \Delta^{-2}+(-744 a+b) \Delta^{-1} \\
& \in \frac{\mathbb{Z}\left[c_{4}, c_{6}, \Delta, \Delta^{-1}\right]}{c_{4}^{3}-c_{6}^{2}=1728 \Delta}
\end{aligned}
$$

This alone does not tell that b is divisible by 24 .

Topological modular forms

Topological modular forms $\boldsymbol{T} \boldsymbol{M F}$ are a topological version of modular forms.

Distantly inspired by Witten's work on elliptic genus in 1986.
$\boldsymbol{T M F}$ was mathematically constructed by Hopkins et al., around 2000, using an amalgam of algebraic topology and algebraic geometry.
[e.g. Hopkins math.AT/0212397]
Far above my head.

There's a textbook I've been reading these days...

https://doi.org/10.1090/surv/201

For us the Segal-Stolz-Teichner conjecture helps:

[Segal 1988]
[Stolz-Teichner 2002]
[Stolz-Teichner 1108.0189]

There is a mathematically well-defined map

$$
\left.\begin{array}{rl}
\phi_{W}: \boldsymbol{T M} \boldsymbol{F}_{\nu} \rightarrow\left\{\begin{array}{c}
\text { modular forms with } \\
\text { integer coefficients and poles }
\end{array}\right.
\end{array}\right\}_{\text {of weight } \nu / 2} .
$$

Under the conjecture

$$
\boldsymbol{T M} \boldsymbol{F}_{\nu}=\frac{\left\{\begin{array}{c}
2 \mathrm{~d} \mathcal{N}=(0,1) \text { supersymmetric theory } \\
\text { with } \nu=2\left(c_{R}-c_{L}\right)
\end{array}\right\}}{\text { continuous deformation }}
$$

this map computes

$$
\phi_{W}(T ; q)=\eta(q)^{\nu} Z_{\mathrm{ell}}(T ; q)
$$

The image of the map

$$
\left.\begin{array}{rl}
\phi_{W}: \boldsymbol{T M} \boldsymbol{F}_{\nu} \rightarrow\left\{\begin{array}{c}
\text { modular forms with } \\
\text { integer coefficients and poles }
\end{array}\right.
\end{array}\right\}_{\text {of weight } \nu / 2} .
$$

was mathematically determined. It is generated by

$$
\boldsymbol{a}_{i, j, k} c_{4}{ }^{i} \boldsymbol{c}_{\mathbf{6}}{ }^{j} \Delta^{k}, \quad(i \geq 0 ; j=0,1 ; k \in \mathbb{Z})
$$

where

$$
a_{i, j, k}= \begin{cases}24 / \operatorname{gcd}(24, k) & (i=j=0) \\ 2 & (j=1) \\ 1 & (\text { otherwise })\end{cases}
$$

Combined with Segal-Stolz-Teichner conjecture, this means that
We know exactly which modular function appears
as the elliptic genus of $2 d \boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1})$ supersymmetric theories.

We can finally come back to our question

Take an $\mathcal{N}=(\mathbf{0}, \mathbf{1})$ SCFT with $\left(c_{L}, \boldsymbol{c}_{\boldsymbol{R}}\right)=(\mathbf{2 4}, \mathbf{1 2)}$.
Let's say its elliptic genus is $\boldsymbol{Z}_{\text {ell }}=a \boldsymbol{q}^{-\mathbf{1}}+b+\boldsymbol{O}\left(\boldsymbol{q}^{\mathbf{1}}\right)$.
Is b always divisible by 24 ?

Recall that otherwise heterotic compactifications to 2 d has a $\mathbb{Z}_{\mathbf{2 4}}$ global anomaly.

We already argued that

$$
\phi_{W}(T ; q)=a c_{4}^{3} \Delta^{-2}+(-744 a+b) \Delta^{-1}
$$

but this should be in the image of
$\phi_{W}: \boldsymbol{T M} \boldsymbol{F}_{\nu} \rightarrow\left\{\begin{array}{c}\text { modular forms with } \\ \text { integer coefficients and poles }\end{array}\right\}_{\text {of weight } \boldsymbol{\nu} / \mathbf{2}}$

$$
=\left(\frac{\mathbb{Z}\left[c_{4}, c_{6}, \Delta, \Delta^{-1}\right]}{c_{4}^{3}-c_{6}^{2}=1728 \Delta}\right)_{\text {of weight } \nu / 2}
$$

So

$$
\phi_{W}(T ; q)=a c_{4}^{3} \Delta^{-2}+(-744 a+b) \Delta^{-1}
$$

should be an integral linear combination of

$$
a_{i, j, k} c_{4}{ }^{i} c_{6}{ }^{j} \Delta^{k}, \quad(i \geq 0 ; j=0,1 ; k \in \mathbb{Z})
$$

where

$$
a_{i, j, k}= \begin{cases}24 / \operatorname{gcd}(24, k) & (i=j=0) \\ 2 & (j=1) \\ 1 & \text { (otherwise) }\end{cases}
$$

Taking $k=-1$, we find that $-744 a+b$ is a multiple of

$$
24 / \operatorname{gcd}(24,-1)=24
$$

So b is divisible by 24. Done.

Comments

Clearly we are not really done.
What I did was to transfer
the question of global anomalies of heterotic strings
to
the validity of the Segal-Stolz-Teichner conjecture

$$
\boldsymbol{T M} \boldsymbol{F}_{\nu}=\frac{\left\{\begin{array}{c}
2 \mathrm{~d} \mathcal{N}=(\mathbf{0}, \mathbf{1}) \text { supersymmetric theory } \\
\text { with } \nu=2\left(c_{R}-c_{L}\right)
\end{array}\right\}}{\text { continuous deformation }}
$$

Two questions immediately arise:

- Assuming the conjecture, what can we say?
- How about the conjecture itself?

Assuming the conjecture, what can we say?

Today I only discussed $2 \mathrm{~d} \mathbb{Z}_{\mathbf{2 4}}$ anomaly.
How about the $4 \mathrm{~d} \boldsymbol{S U (2)}$ anomaly I started the talk?
How about other global anomalies in heterotic string theories?

Recall:

Take an $\boldsymbol{S U (2)}$-symmetric $\boldsymbol{\mathcal { N }}=\mathbf{(0 , 1)}$ SCFT
with $\left(c_{L}, c_{R}\right)=(22,9)$.
Let $\boldsymbol{N}_{\boldsymbol{k}}$ be the number of states in the \boldsymbol{k}-dim'l irrep of $\boldsymbol{S U (2)}$ with $\left(\boldsymbol{L}_{\mathbf{0}}, \overline{\boldsymbol{L}}_{\mathbf{0}}\right)=(\mathbf{1}, \mathbf{0})$ in the R-sector.

IS $(-1)^{N_{2}+N_{6}+N_{10}+\cdots}=+1$?

Such a theory determines a class

$$
T \in T M F_{\nu}(B S U(2))_{k}
$$

where $\nu=2(9-22)=-26$
and \boldsymbol{k} is the level of the $\boldsymbol{S} \boldsymbol{U}(\mathbf{2})$ current algebra.

The absence of Witten anomaly can then be translated to a certain property of

$$
T M F_{-26}(B S U(2))_{k}
$$

Unfortunately nobody has computed this group, and I found nobody who could compute it for me.

More generally, the question of global anomaly of heterotic compactifications down to \boldsymbol{d} dimensions with gauge symmetry \boldsymbol{G} can be translated to the study of

$$
T M F_{-22-d}(B G)_{k}
$$

Each group is very hard to compute.

More generally, the question of global anomaly of heterotic compactifications down to \boldsymbol{d} dimensions with gauge symmetry G can be translated to the study of

$$
T M F_{-22-d}(B G)_{k}
$$

Each group is very hard to compute.
But there is a way to show that global anomaly always vanishes, by considering all cases at once, without doing any case-by-case analyses.
[Work in progress with Yamashita, a mathematician in Kyoto]

How about the conjecture itself?

$$
\boldsymbol{T M} \boldsymbol{F}_{\boldsymbol{\nu}}=\frac{\left\{\begin{array}{c}
2 \mathrm{~d} \boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1}) \text { supersymmetric theory } \\
\text { with } \boldsymbol{\nu}=2\left(\boldsymbol{c}_{\boldsymbol{R}}-\boldsymbol{c}_{\boldsymbol{L}}\right)
\end{array}\right\}}{\text { continuous deformation }}
$$

It will be very hard to get a mathematically rigorous proof. The RHS isn't even defined yet!

Many subtle properties on the LHS are known.
They translate to many subtle properties of 2d theories which are not at all apparent to us.

One example is $\boldsymbol{T} \boldsymbol{M} \boldsymbol{F}_{\boldsymbol{\nu}} \simeq \boldsymbol{T} \boldsymbol{M} \boldsymbol{F}_{\boldsymbol{\nu}+\mathbf{5 7 6}}$. Why?

As another example, let us take $\boldsymbol{T} \boldsymbol{M} \boldsymbol{F}_{\mathbf{3}}=\mathbb{Z}_{\mathbf{2 4}}$.
This means that $2 \mathrm{~d} \mathcal{N}=(0,1)$ theories with $2\left(c_{R}-c_{L}\right)=3$ can be classified by $\mathbb{Z}_{\mathbf{2 4}}$.

Examples in each class $\boldsymbol{k} \in \mathbb{Z}_{\mathbf{2 4}}$ are believed to be given by

$$
\mathcal{N}=(0,1) \text { sigma models on } \boldsymbol{S}^{\mathbf{3}}=\boldsymbol{S} \boldsymbol{U}(\mathbf{2}) \text { with WZW level } \boldsymbol{k} .
$$

How to see the mod- 24 behavior in k was discussed in [Gaiotto, Johnson-Freyd, Witten 1902.10249].

How to extract a $\mathbb{Z}_{\mathbf{2 4}}$ invariant from such a theory was discussed in [Gaiotto, Johnson-Freyd 1904.05788].

Recall also that the image of the map

$$
\left.\begin{array}{rl}
\phi_{W}: T M F_{\nu} \rightarrow\left\{\begin{array}{c}
\text { modular forms with } \\
\text { integer coefficients and poles }
\end{array}\right.
\end{array}\right\}_{\text {of weight } \nu / 2} .
$$

was mathematically determined. It is generated by

$$
\boldsymbol{a}_{i, j, k} \boldsymbol{c}_{4}{ }^{i} \boldsymbol{c}_{\mathbf{6}}{ }^{j} \Delta^{k}, \quad(i \geq 0 ; j=0,1 ; k \in \mathbb{Z})
$$

where

$$
a_{i, j, k}= \begin{cases}24 / \operatorname{gcd}(24, k) & (i=j=0) \\ 2 & (j=1) \\ 1 & \text { (otherwise) }\end{cases}
$$

One consequence in our language is as follows.

Consider a $2 d \boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1})$ theory with $\mathbf{2}\left(\boldsymbol{c}_{\boldsymbol{R}}-\boldsymbol{c}_{\boldsymbol{L}}\right)=\mathbf{2 4 k}$.
If its elliptic genus is constant, it is a multiple of $\mathbf{2 4} / \operatorname{gcd}(\mathbf{2 4}, \boldsymbol{k})$.

Such theories for $1 \leq k \leq 5$ were constructed in [Gaiotto, Johnson-Freyd 1811.00589].

In particular,

If the elliptic genus of $2 d \boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1})$ theory is simply $\mathbf{1}$, then $\boldsymbol{c}_{\boldsymbol{L}}-\boldsymbol{c}_{\boldsymbol{R}}$ is divisible by 288.

Conversely, there should be a $2 d \boldsymbol{\mathcal { N }}=(\mathbf{0}, \mathbf{1})$ theory whose elliptic genus is $\mathbf{1}$ and $\boldsymbol{c}_{\boldsymbol{L}}-\boldsymbol{c}_{\boldsymbol{R}}= \pm \mathbf{2 8 8}$.

This is an open question and I consider it quite important.

Summary

Today, I considered global anomalies in heterotic string theories.
Such questions can be answered using the mathematical theory of $\boldsymbol{T M F}$, using the Segal-Stolz-Teichner conjecture:

$$
\boldsymbol{T M} \boldsymbol{F}_{\nu}=\frac{\left\{\begin{array}{c}
2 \mathrm{~d} \mathcal{N}=(0,1) \text { supersymmetric theory } \\
\text { with } \nu=2\left(c_{R}-c_{L}\right)
\end{array}\right\}}{\text { continuous deformation }}
$$

This conjecture predicts many unexplored properties of 2d theories, which I think are worth pursuing.

