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I’ve been working on topological modular forms (TMF)
for about three years, since the start of the COVID pandemic.

TMF is an esoteric subject in algebraic topology / homotopy theory.

But it is also thought to classify 2dN=(0, 1) SQFTs.

It also has applications in the study of heterotic strings.
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Brief timeline:

Jan 2020 started learning about TMF

Jun 2021 gave a talk in this seminar series [slides] [video]

Sep 2023 giving a talk here again

I feel I understand TMF much better now!

(If you have downloaded the PDF file of this talk,
[purple texts] are hyperlinked.)
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https://member.ipmu.jp/yuji.tachikawa/transp/india.pdf
https://www.youtube.com/watch?v=QEe0KqQ2IjA
https://en.wikipedia.org/wiki/Purple


I’d like to give an introduction to this fascinating subject.

I’d like to start with the baby version,
and then proceed to the ‘real’ version.

obj. in alg. top. classifies
baby version K SQM = 1d SQFT
‘real’ version TMF 2d SQFT
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SQM and K-theory
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Let me start with the relation between

supersymmetric quantum mechanics

and

K-theory.
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Suppose you really like SQM.

You’d like to classify SQM. How should you proceed?

Mimimal ingredients are (−1)F and Q = Q† satisfying

{(−1)F , Q} = 0.

The Hamiltonian isH = Q2.
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Take an eigenstate |v⟩ ofH with eigenvalue E:

E = ⟨v|H|v⟩ = ⟨v|QQ|v⟩ =
∥∥∥Q |v⟩∥∥∥2 ≥ 0

So we have
|+⟩ Q←→ |−⟩ (E > 0)

while
|+⟩ Q−→ 0,

|−⟩ Q−→ 0,
(E = 0).
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The Witten index Z is defined to be Z = tr(−1)F e−βH .

Equivalently, it is

the number of zero energy states with (−1)F = +1
minus the number of zero energy states with (−1)F = −1.

This is independent of continuous deformation of the system in question:

|+⟩ Q←−−−→ |−⟩ (E > 0)
⇐
⇒

|+⟩ Q→ 0
Q← |−⟩ (E = 0)
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Are two SQM with the same Witten index continuously connected?

Clearly there are counterexamples. For example:

1. A system with a single state |+, E = 0⟩
2. A system with a |+, E = 0⟩ and a pair |±, E > 0⟩.

both have Witten index = 1.

But you can’t change the dimension of the Hilbert space continuously!

Note that a system with a single pair |±, E > 0⟩ breaks supersymmetry.
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Let’s declare that two systems are equivalent when they are connected
via (a) continuous deformation and

(b) addition/removal of susy-breaking sector.

Then two systems

1. A system with a single state |+, E = 0⟩
2. A system with a |+, E = 0⟩ and a pair |±, E > 0⟩.

are equivalent.

It is easy to see that the Witten index is a complete invariant,
i.e. two systems are equivalent iff the Witten indices are the same.
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Let’s spice it up.
Consider two Majorana fermion operators ψ1,2 = ψ†

1,2.

It has a standard two-dimensional irreducible representation

ψ1 = σ1, ψ2 = σ2, (−1)F = σ3.

Thenm = 2n Majorana fermions are irreducibly represented
on a Hilbert space with 2m/2 = 2n states.

What happens with a single Majorana fermion, i.e. whenm = 1?
There’s no Hilbert space whose dimension is 21/2.

It’s a type of ‘gravitational’ anomaly. An anomalous system in this sense
requires an additional ψ = ψ† to be irreducibly quantized.

(See Sec.2.1 of [Witten 2305.01012] for recent pedagogical explanation.)
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http://arxiv.org/abs/2305.01012


Let’s then classify SQM with this gravitational anomaly.

The ingredients are
{(−1)F , Q} = 0

together with an additional ψ satisfying

{(−1)F , ψ} = {Q,ψ} = 0.

How is the classification affected?
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Well, a minimal susy-preserving example is

(−1)F = σ3, ψ = σ1, Q = 0

but it can be continuously connected to susy-breaking choice

(−1)F = σ3, ψ = σ1, Q = cσ2.

So every SQM with this anomaly can be trivialized.
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Classification of SQM up to
(a) continuous deformation and
(b) addition/removal of susy-breaking sector

is given by

grav. anomaly 0 1
classification Z 0

The complete invariant is given by the Witten index.
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Let’s spice it up further!

Suppose you’re interested in time-reversal-invariant SQM.

Time-reversal is given by an anti-linear T with T 2 = 1 with

[T, (−1)F ] = [T,Q] = 0.

Gravitational anomaly in this case is mod 8 rather than mod 2,
again carried by Majorana fermions.

(See Sec.3.2 of [Witten 2305.01012] for recent pedagogical explanation.)

So the ingredients are: (−1)F , Q, T and ψ1,...,n with [T, ψi] = 0.

16 / 66

http://arxiv.org/abs/2305.01012


Classification of time-reversal-invariant SQM up to
(a) continuous deformation and
(b) addition/removal of susy-breaking sector

is known to be given by

grav. anomaly 0 1 2 3 4 5 6 7
classification Z Z2 Z2 0 Z 0 0 0

The cases with grav. anomaly = 0 and = 4 are distinguished
by ordinary Witten index.

The cases with grav. anomaly = 1 and = 2 are distinguished
by the mod-2 Witten index.
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What is the mod-2 Witten index?

Consider the case when the grav. anomaly = 1:

grav. anomaly 0 1 2 3 4 5 6 7
classification Z Z2 Z2 0 Z 0 0 0

Recall that the ingredients are

(−1)F , Q, T, ψ.
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WhenH = 0 the irrep has the structure

|+⟩ ψ←→ |−⟩

while whenH > 0 the irrep looks like

|+⟩ ψ←→ |−⟩
Q ↕ ↕ Q

|−′⟩ ψ←→ |+′⟩

where every basis state is T invariant. So

1

2
(# of zero energy states)

is a mod-2 invariant.
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So, the classification of SQM without time-reversal is

grav. anomaly 0 1
classification Z 0

and the same with time reversal is

grav. anomaly 0 1 2 3 4 5 6 7
classification Z Z2 Z2 0 Z 0 0 0
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These exactly matches with the math results

n 0 1
Kn Z 0

and

n 0 1 2 3 4 5 6 7
KOn Z Z2 Z2 0 Z 0 0 0

Why?
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Well, K theory and KO theory have many different definitions leading to
the same generalized (co)homology theory.

One definition in [Atiyah-Singer 1969] happens to literally agree with
what we’ve been doing so far.

Somehow it long predates Witten’s introduction of SQM ...

(For a review, see Appendix of [YT-Yamashita-Yonekura 2302.07548].)
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https://doi.org/10.1007/BF02684885
http://arxiv.org/abs/2302.07548


2d SQFT and TMF
Part 1: Ordinary and mod-2 elliptic genera

23 / 66



We can summarize our discussion so far as follows:

KOn =

{ Time-reversal-invariant SQM
with grav. anomaly n ∈ Z8

}
continuous deformation and/or
adding/subtracting���SUSY sector
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Satisfied with the understanding of SQM = 1d SQFT,
we’d like to do the same with 2d SQFT.

Take the minimal amount of supersymmetry,N=(0, 1).

So we’d like to classify 2dN=(0, 1) theories up to
(a) continuous deformation and
(b) addition/removal of susy-breaking sector.

My convention is to put SUSY on the right-moving sector.
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In SQM = 1d SQFT, the grav. anomaly was carried
e.g. by Majorana fermions.

Also in 2d, the grav. anomaly is carried e.g. by Majorana fermions,
characterized by the anomaly polynomial

n
p1

48
, n ∈ Z.

For CFTs, it’s given by
n = 2(cR − cL),

but n makes sense even for non-conformal theories.
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So our question is

??? =

{ 2dN=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

.

27 / 66



Recall

KOn =

{ Time-reversal-invariant SQM
with grav. anomaly n ∈ Z8

}
continuous deformation and/or
adding/subtracting���SUSY sector

(Here I’m using the time-reversal-invariant version in SQM = 1d SQFT,
because 2d theories automatically come with CPT.)
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Mathematicians say that the (co)homology theories

Hn(−), KOn(−), TMFn(−)

form a natural progression, where TMFn is the topological modular
forms.

Very roughly, Hn is 0d SQFT = theory of ordinary differential forms.

We saw that KOn captures 1d SQFT = SQM.

Then it’s likely that we have the following statement:
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TMFn =

{ 2dN=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

This is the conjecture of Segal-Stolz-Teichner.

[Segal 1988] [Stolz-Teichner 2002] [Stolz-Teichner 1108.0189]

There are more and more physics pieces of evidence since 2018.
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https://mathscinet.ams.org/mathscinet-getitem?mr=992209
https://doi.org/10.1017/CBO9780511526398.013
http://arxiv.org/abs/1108.0189


Before discussing mathematical properties of TMFn, let’s study

{ 2dN=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

from physics points of view.

Question:

How do we detect such equivalence classes?
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General answer:

Find functions
f : {SQFTs} → numbers

which are invariant under deformations.

This is exactly what we did in the case of SQM,
for which we used ordinary and mod-2 Witten indices.
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Classic example:

Elliptic genus [Witten 1989]

• the generating function of the Witten index of the system on
R-sector S1 for each value of the momenta P around S1:

Z(q) = trHR
S1

(−1)F qL0−cL/24q̄L̄0−cR/24

=
∑
P

(Witten index at fixed P ) qP

• nonzero only when n = 2(cR − cL) ≡ 0 mod 4.

• is a Laurent polynomial with coefficients in Z.
• is a modular form.
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https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-109/issue-4/Elliptic-genera-and-quantum-field-theory/cmp/1104117076.full


Another example:

Mod-2 elliptic genus [YT-Yamashita-Yonekura 2302.07548]

• the generating function of the mod-2 Witten index of the system
on R-sector S1 for each value of the momenta P around S1:

Z(q) =
∑
P

(mod-2 Witten index at fixed P ) qP

• nonzero only when n = 2(cR − cL) ≡ 1, 2 mod 8.

• is a Laurent polynomial with coefficients in Z2.

• is a mod-2 modular form.
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In essence, physics provides

{ 2dN=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

−→
{

modular forms with
coefficients in KOn

}
.

As we have

n 0 1 2 3 4 5 6 7
KOn Z Z2 Z2 0 Z 0 0 0

this provides ordinary elliptic genus when n ≡ 0, 4 mod 8 and
mod-2 elliptic genus when n ≡ 1, 2 mod 8.
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A large source of 2dN=(0, 1) SQFTs are theN=(0, 1) sigma models
on a manifoldMd (where d denotes the dimension).

Each coordinateXi comes with a right-moving superpartner ψiR.

We need to have a B-field satisfying

dH =
1

2
p1(R)

onMd, for the cancellation of worldsheet anomaly.

Such sigma models have n = 2(cR − cL) = d.
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So we have

{ Mn with
B-field

}
→

{ 2d N=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

→
{

modular forms with
coefficients in KOn

}

Math also provides

{ Mn with
B-field

}
→ TMFn →

{
modular forms with
coefficients in KOn

}
.
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Note only that, the following diagram commutes:

{ Mn with
B-field

}

{ 2d N=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

TMFn

{
modular forms with
coefficients in KOn

}

where the upper and lower paths can be studied by physicists and
mathematicians, respectively.
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This is a strong piece of supporting evidence of

TMFn =

{ 2dN=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

,

the Segal-Stolz-Teichner conjecture.
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2d SQFT and TMF
Part 2: Bunke-Nauman invariant
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Question:

Do ordinary and mod-2 elliptic genus characterize

TMFn ∼

{ 2dN=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

?

Answer:

No.
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[Bunke and Naumann 0912.4875]
[Berwick-Evans 1510.06464] constructed a subtler invariant

TMFn →
R((q))

Z((q)) + modular forms

when n = 3 or 7 mod 8.

Here X((q)) is the ring of Laurent series in q with X coefficients.

(Note that ordinary and mod-2 elliptic genera are nonzero only for
n = 0, 1, 2, 4 mod 8, so they vanish for n = 3, 7 mod 8.)
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http://arxiv.org/abs/0912.4875
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[Gaiotto and Johnson-Freyd 1904.05788]
[Yonekura 2207.13858] gave the physics version:

{ 2dN=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

→
R((q))

Z((q)) + modular forms

again when n = 3 or 7 mod 8.

The approach of Gaiotto and Johnson-Freyd is to consider a mock modular form
associated to a given theory. This gives an invariant which characterize the
failure of this mock modular form to be truly modular, explaining the RHS.
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The following diagram is expected to commute:

{ Mn with
B-field

}

{ 2d N=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

TMFn

R((q))
Z((q)) + modular forms

where n = 3 or 7 mod 8.

This is called the Bunke-Naumann invariant.
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For example, for theN=(0, 1) sigma model on S3 with
∫
S3

H = k,

or equivalently theN=(0, 1) WZW model on SU(2) at level k.

The Bunke-Naumann invariant turns out to be

k

24
∈ R/Z,

both mathematically and physically.

It is consistent with the existence of an explicit deformation of the
k = 24 model to null [Gaiotto, Johnson-Freyd, Witten 1902.10249].
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2d SQFT and TMF
Part 3: Even subtler parts
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Question:

Does the combination of ordinary or mod-2 elliptic genus and
Bunke-Naumann invariant completely detect

TMFn ∼

{ 2dN=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

?

Answer:

No!
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Let An be the subgroup of TMFn
whose ordinary/mod-2 elliptic genus is zero.

These are the truly interesting part of TMFn!

How do we know these?
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The latest standard reference on TMFn is [Bruner-Rognes 2021]

This has about 700 pages, but is not a textbook ;
it just documents the computation of TMFn in detail.
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https://bookstore.ams.org/surv-253


A table from this book looks like this
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Here the horizontal axis is n, a dot is Z2,
when n dots are connected vertically they mean Z2n ,
when∞ dots are done so they mean Z, etc.

Black dots have nonzero ordinary or mod-2 Witten indices,
and red dots are the most interesting ones.
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According to them, in the range −31 ≤ n ≤ 9,
the nonzero cases are:

A3 = Z24, A6 = Z2, A8 = Z2, A9 = Z2, . . .
A−28= Z2, A−30= Z2, A−31= Z2, . . .

A3 = Z24 is detected by Bunke-Naumann invariant,
but what are the others?

A3,6,8,9 areN=(0, 1) WZW models on

SU(2) SU(2)2 SU(3) SU(2)3

[Hopkins math.AT/0212397]

What are A−28,−30,−31?
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Here the classification of spin holomorphic CFTs comes in.

Stolz-Teichner conjecture concernsN=(0, 1) SQFTs
and n = 2(cR − cL).

Purely left-moving (i.e. cL > 0, cR = 0) non-supersymmetric
modular-invariant spin CFTs are actuallyN=(0, 1) SQFTs
with n = −2cL.

These are classified recently in
[Boyle Smith, Lin, YT, Zheng 2303.16917] (cL ≤ 16)
[Rayhaun 2303.16921] (cL ≤ 24)
[Höhn-Möller 2303.17190] (cL ≤ 24)
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The irreducible ones below cL ≥ 16 are exhausted by

cL n = −2cL
16 −32 so(32), [so(16)× so(16)]◦
31
2

−31 [(E8)2]
◦

15 −30 [su(16)]◦

14 −28 [E7 × E7]
◦

12 −24 [so(24)]◦

8 −16 E8
1
2

−1 ψ

Here, [gk]◦ is a fermionic modular-invariant extension of the current
algebra gk, where k = 1 is omitted for brevity.

The red ones have zero ordinary and/or mod-2 elliptic genus.

53 / 66



Let’s compare with the Table in [Bruner-Rognes 2021]:
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−4 0−8−12−16−20−24

−24−28−32−36−40−44−48

Note the perfect match with

cL n = −2cL theory
31
2

−31 [(E8)2]
◦

15 −30 [su(16)]◦

14 −28 [E7 × E7]
◦

!

I was totally shocked when I first noticed it while browsing the book.
They are very likely SQFT representatives of A−28,−30,−31.
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Let Ad be the subgroup of TMFd
whose ordinary/mod-2 elliptic genus is zero.

In the range −31 ≤ d ≤ 9, the nonzero cases are:

A3 = Z24, A6 = Z2, A8 = Z2, A9 = Z2, . . .
A−28= Z2, A−30= Z2, A−31= Z2, . . .

A3,6,8,9 areN=(0, 1) WZW models on

SU(2) SU(2)2 SU(3) SU(2)3

and A−28,−30,−31 are

[E7 × E7]
◦, [su(16)]◦, [(E8)2]

◦

[YT-Yamashita 2305.06196]
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A TMF pairing and the
Green-Schwarz coupling
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We were talking about the subgroup An of TMFn
for which ordinary and mod-2 Witten index is zero.

Mathematicians say that

Ad ←→ A−22−d

are Pontryagin dual if d ̸≡ 3 mod 24:

A3 = Z24, A6 = Z2, A8 = Z2, A9 = Z2, . . .
↕ ↕ ↕

A−28= Z2, A−30= Z2, A−31= Z2, . . .
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So there should be a pairing

A6 = A8 = A9 =
N=(0, 1)

WZW model on
SU(2)2 SU(3) SU(2)3

↕ ↕ ↕
purely left-moving modular-
invariant fermionic CFT

[E7 × E7]
◦, [su(16)]◦, [(E8)2]

◦

= A−28 = A−30 = A−31

What would this be, physically ?
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The key to the question is that, these spin-CFTs provide the angular part
of the non-supersymmetric heteortic p = 4-, 6- and 7-branes of
[Kaidi-Ohmori-YT-Tachikawa 2303.17623].

Rp,1 × R>0︸ ︷︷ ︸ × S8−p + current algebra︸ ︷︷ ︸
↓ RG

A9 d = 9 ↔ [(E8)2]
◦ A−31

A8 d = 8 ↔ [su(16)]◦ A−30

A6 d = 6 ↔ [E7 × E7]
◦ A−28

This arises exactly on the places where the pairing Ad ↔ A−d−22

mathematicians constructed arises.
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Concretely, take the pair

A6 d = 6 ↔ E7 × E7 A−28

Question:

What would A6 ≃ Z2 generated by

N=(0, 1) WZW model on SU(2)× SU(2)

provide for heterotic string compactification with [E7 × E7]
◦?
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Answer:

There is a discrete Green-Schwarz coupling, which gives the phase −1,
on the 6-dimensional manifold SU(2)× SU(2) with unitH flux
on this heterotic string compactification with [E7 × E7]

◦.
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In general, for a d-dimensional spacetime,
the internal CFT should have

cL = 26− d, cR =
3

2
(10− d)

therefore it is an element in

TMF2(cR−cL)=−22−d .

So, the discrete part of the Green-Schwarz coupling is a pairing

d←→ −22− d.

This pair of dimensions agrees with what appears in the mathematical
pairing :

Ad ←→ A−22−d.

62 / 66



So the natural guess is that the mathmatical pairing

Ad←→A−22−d

is actually the discrete part of the Green-Schwarz coupling.

Together with Yamashita, I confirmed it in [YT-Yamashita 2305.06196].
It is written as a math paper with a short summary for physicists.

If you’re interested, please have a look!
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Summary
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TMFn ≃

{ 2dN=(0, 1) SQFT
with grav. anomaly n ∈ Z

}
continuous deformation and/or
adding/subtracting���SUSY sector

{
modular forms with
coefficients in KOn

} R((q))
Z((q)) + modular forms

(n = 0, 1, 2, 4 mod 8) (n = 3, 7 mod 8)

ordinary or mod-2
elliptic genus Bunke-Naumann inv.
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Let An be the kernel of TMFn → {ordinary or mod-2 elliptic genus}.
Nonzero An in the range −31 ≤ n ≤ 9 are:

SU(2) SU(2)2 SU(3) SU(2)3

↓ ↓ ↓ ↓
A3 = Z24, A6 = Z2, A8 = Z2, A9 = Z2, . . .

↕ ↕ ↕
A−28 = Z2, A−30 = Z2, A−31 = Z2, . . .

↑ ↑ ↑
[E7 × E7]

◦ [su(16)]◦ [(E8)2]
◦

A3 = Z24 is detected by Bunke-Naumann invariant,
and the rest has the pairing

Ad ←→ A−22−d

which captures the discrete part of the Green-Schwarz coupling.
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