On fractional M5 branes and frozen singularities

Yuji Tachikawa

Sep. 2015, KIAS

cf. global models were already analyzed implicitly in

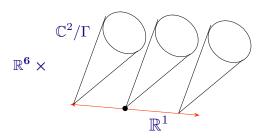
[Aspinwall-Morrison, "Point-like instantons on K3 orbifolds", hep-th/9705104]

[de Boer-Dijkgraaf-Hori-Keurentjes-Morgan-Morrison-Sethi, "Triples, fluxes, and strings", hep-th/0103170]

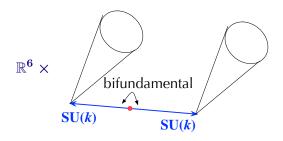
What I'm going to talk is a local analysis.

I've been studying 6d $\mathcal{N}=(1,0)$ theories for two years.

A large class of such theories can be obtained by putting M5-branes on the ALE singularities:

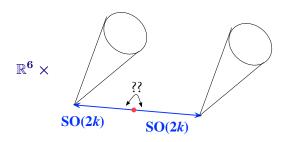


When $\Gamma = \mathbb{Z}_k$, we have SU(k) gauge fields at the singularity, and an M5 just gives a bifundamental of $SU(k) \times SU(k)$:

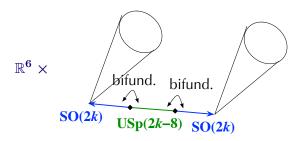


But surprising things happen when Γ is of type D_k or E_k . [del Zotto-Heckman-Tomasiello-Vafa, 1407.6359]

For example, take Γ of type D_k and put 1 M5:

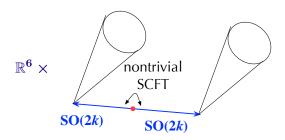


The M5 becomes two fractional M5s:

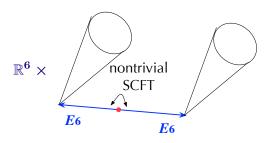


Somehow the middle region the gauge group is $\mathbf{USp}(2k-8)$, and each half-M5 gives a bifundamental.

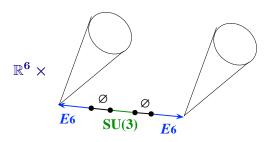
So if we merge two half-M5s back into one, we get a nontrivial SCFT:



Similarly, when Γ is of type E_6 , a full M5-brane fractionates ...



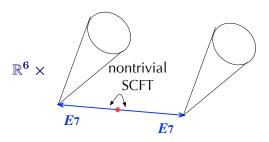
Similarly, when Γ is of type E_6 , a full M5-brane fractionates ...



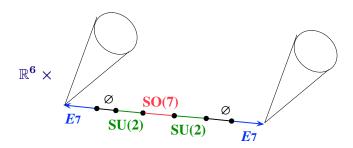
into 4 fractional M5s, and the gauge groups occur in the sequence

$$E_6$$
, \varnothing , $SU(3)$, \varnothing , E_6 .

Similarly, when Γ is of type E_7 , a full M5-brane fractionates ...



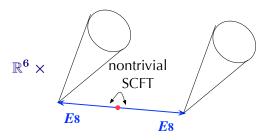
Similarly, when Γ is of type E_7 , a full M5-brane fractionates ...



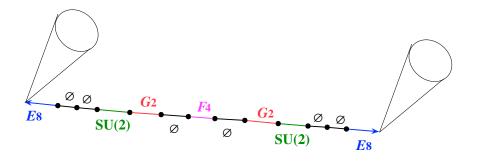
into 6 fractional M5s, and the gauge groups occur in the sequence

$$E_7$$
, \varnothing , $SU(2)$, $SO(7)$, $SU(2)$, \varnothing , E_7 .

Finally, when Γ is of type E_8 , a full M5-brane fractionates ...



Finally, when Γ is of type $\textbf{\textit{E}}_{8}$, a full M5-brane fractionates ...



into 12 fractional M5s, and the gauge groups occur in the sequence

$$E_8,\varnothing,\varnothing,\operatorname{SU}(2),G_2,\varnothing,F_4,\varnothing,G_2,\operatorname{SU}(2),\varnothing,\varnothing,E_8$$

Summarizing, a full M5

- on type **A** singularities: doesn't fractionate.
- on type D_k singularities: fractionates into 2.
 Groups: SO(2k), USp(2k - 8), SO(2k)
- on type E₆ singularities: fractionates into 4.
 Groups: E₆, Ø, SU(3), Ø, E₆.
- on type E₇ singularities: fractionates into 6, Groups: E₇, Ø, SU(2), SO(7), SU(2), Ø, E₇.
- on type E_8 singularities: fractionates into 12, Groups: E_8 , \varnothing , \varnothing , SU(2), G_2 , \varnothing , F_4 , \varnothing , G_2 , SU(2), \varnothing , \varnothing , E_8 .

What the heck is that?

Aim of the talk:

Better understand why this is the case.

Contents

1. IIA

2. F

3. M

4. Duality

Contents

1. IIA

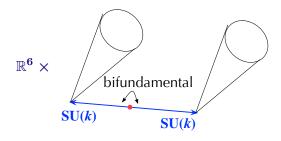
2. F

3. M

4. Duality

For Γ of type A or D, one can just reduce the system to IIA.

For example, this becomes ...

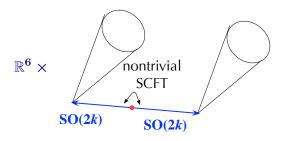


Just this:

$$\mathbb{R}^6 \times \frac{\mathsf{NS5}}{k \, \mathsf{D6s}}$$

which clearly doesn't fractionate.

When Γ is type D, this becomes ...



This:

$$\mathbb{R}^6 \times \frac{NS5}{k \, D6s + O6}$$

which is known to fractionate to:

this:

$$\mathbb{R}^{6} \times \frac{\frac{1/2 \text{NS5}}{k \text{ D6s} + \text{O6}^{-} (k-4) \text{ D6s} + \text{O6}^{+} k \text{ D6s} + \text{O6}^{-}}{(k-4) \text{ D6s} + \text{O6}^{+} k \text{ D6s} + \text{O6}^{-}}}$$

Remember: Op^{\pm} becomes Op^{\mp} when we cross a half-NS5.

So far so good, but when Γ is of type E, you can't reduce to IIA.

I say, type A and type D singularities are so **exceptional** that they don't show the generic behavior.

Type E is the generic case.

We can say we understand things only when we have a method equally applicable to all the types A, D, E.

Contents

1. IIA

2. F

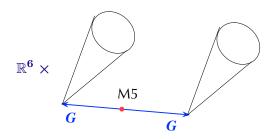
3. M

4. Duality

So, let's use F-theory.

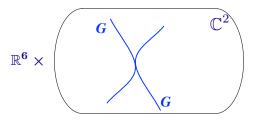
This is the method used by [del Zotto-Heckman-Tomasiello-Vafa, 1407.6359].

Recall that the M-theory configuration



is dual to ...

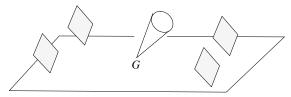
This F-theory configuration:



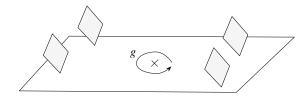
where two F-theory 7-branes intersect at a point.

Before getting further, let's recall the duality chain relating the two.

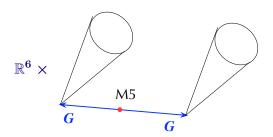
First, recall that a \mathbb{C}^2/Γ singularity can be embedded in an elliptic fibration:



corresponding to a certain $SL(2, \mathbb{Z})$ monodromy:

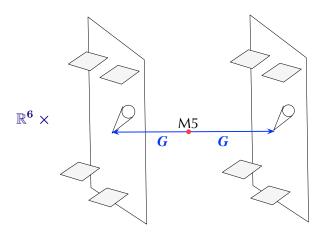


So the M-theory configuration

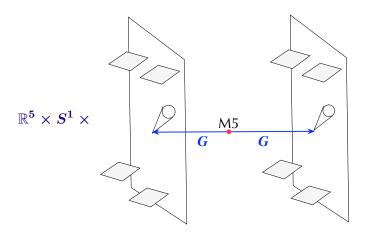


can be embedded into an elliptic fibration of the form ...

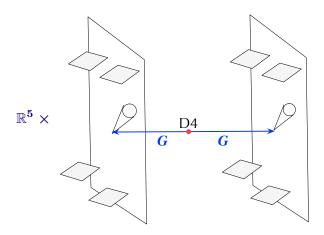
into an elliptic fibration of this form:



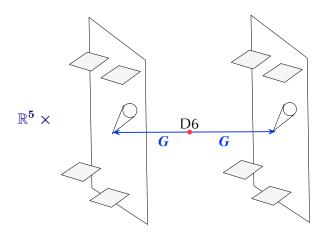
Compactify it on S^1 , which we make large at the last step again:



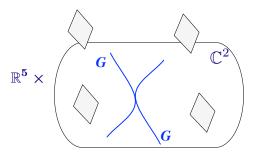
Reduce it to IIA:



Take the double T-dual along the elliptic fiber:

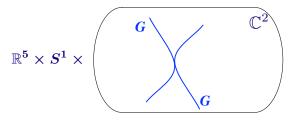


Lift it again to M-theory:

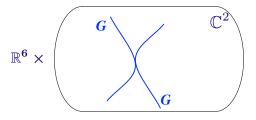


where \mathbb{C}^2 is better to be thought of as a Taub-NUT

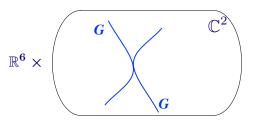
This is the F-theory on



We make S^1 large again, done!



So, how do we know that something happens when G is not of type A?



Recall that the elliptic fibration can be put to the Weierstrass form

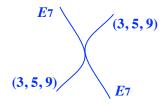
$$y^2 = x^3 + ax + b$$

where **a**, **b** are functions on the base.

Let $\Delta = 4a^3 + 27b^2$ be its discriminant.

	$oldsymbol{g}$	$oldsymbol{G}$	$ \operatorname{ord}(a) $	$\mathbf{ord}(b)$	$\operatorname{ord}(\Delta)$
$oxed{I_k}$	$egin{pmatrix} 1 & k \ 0 & 1 \end{pmatrix}$	$\mathbf{SU}(k)$	0	0	\boldsymbol{k}
II	$\left(egin{array}{cc} 1 & 1 \ -1 & 0 \end{array} ight)$	Ø	1	1	2
III	$\left \begin{array}{cc} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right $	$\mathbf{SU}(2)$	1	2	3
IV	$\left \begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right $	SU (3)	2	2	4
I_k^*	$egin{pmatrix} -1 & -k \ 0 & -1 \end{pmatrix}$	$\mathbf{SO}(2k+8)$	2	3	k+6
IV^*	$\left egin{pmatrix} -1 & -1 \ 1 & 0 \end{pmatrix} \right $	E_6	3	4	8
III^*	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	E_7	3	5	9
II^*	$\left \begin{array}{cc} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}\right $	E_8	4	5	10

So, suppose two E_7 7-branes intersect.



Here (3, 5, 9) means that (a, b, Δ) vanish to these orders there.

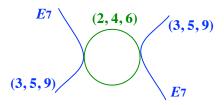
At the intersection,

$$(3,5,9)+(3,5,9)=(6,10,18)\geq (4,6,12).$$

A smooth elliptic fibration can't exceed (4, 6, 12).

So we blow-up the intersection point.

We now get this configuration

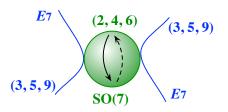


where

$$(2,4,6) = (3,5,9) + (3,5,9) - (4,6,12).$$

Looking up the table, this corresponds to I_0^* with SO(8).

A more detailed analysis using the Tate form (instead of the Weierstrass form) of the elliptic fibration shows that there is an outer-automorphism action of $\mathbf{SO}(8)$ around this S^2 of I_0^* curve



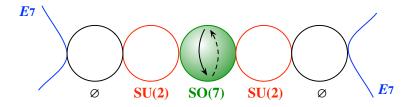
giving SO(7).

The intersection of (2, 4, 6) and (3, 5, 9) is still singular since

$$(2,4,6)+(3,5,9)\geq (4,6,12).$$

We need to blow up, repeat ...

We end up with this final configuration:



So we can now work it out, for any $G = A_k$, D_k and $E_{6,7,8}$ in an uniform manner ...

But I don't feel I understood it.

Let's try something else.

[Ohmori-Shimizu-YT-Yonekura, 1503.06217, Sec. 3.1]

Contents

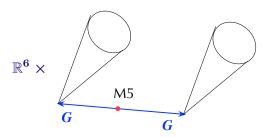
1. IIA

2. F

3. M

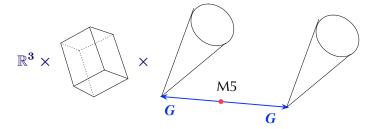
4. Duality

We start from the original setup:

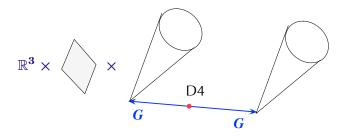


We're interested in the tensor branch of this 6d $\mathcal{N}=(1,0)$ theory.

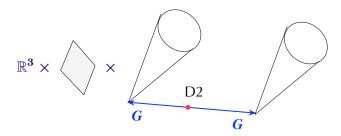
We can instead study the Coulomb branch of its T^3 compactification:



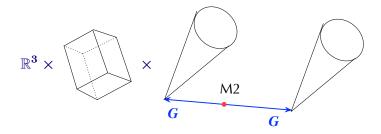
Reduce it to IIA:



Take the double T-dual:

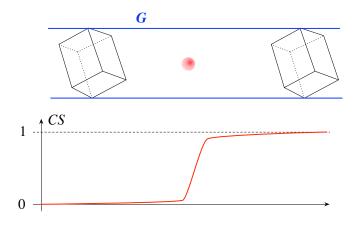


Lift it back to M-theory:



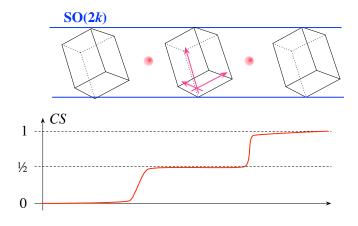
We're now interested in its Higgs branch, since we've effectively taken the 3d mirror.

An M2 can dissolve into the G gauge field as an instanton on $T^3 \times \mathbb{R}$:

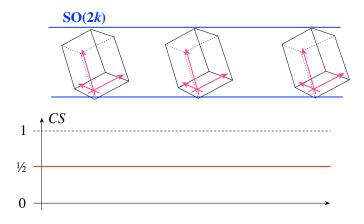


The plot below shows the evolution of the Chern-Simons invariant on T^3 at each slice.

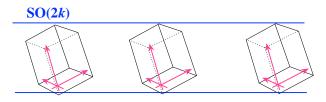
When G = SO(2k), the instanton can fractionate:



In an extreme situation, we have this:



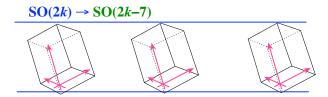
The bundle is flat but nontrivial.



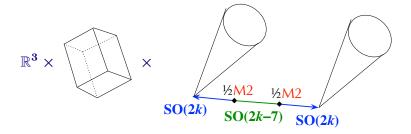
Three holonomies are known to be given by

$$\begin{aligned} & \mathbf{diag}(+,+,+,-,-,-,+^{2k-7}) \\ & \mathbf{diag}(+,-,-,+,+,-,+^{2k-7}) \\ & \mathbf{diag}(-,+,-,+,-,+^{2k-7}) \end{aligned}$$

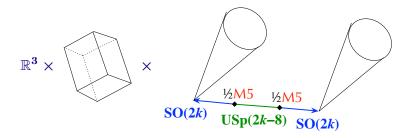
So the unbroken gauge group is



So we have

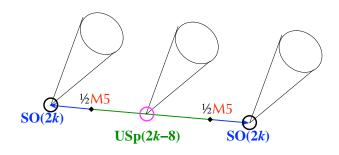


Going back the duality chain, we have



since we need to take 4d S-duality / 3d mirror symmetry:

$$SO(2k-7) \leftrightarrow USp(2k-8)$$

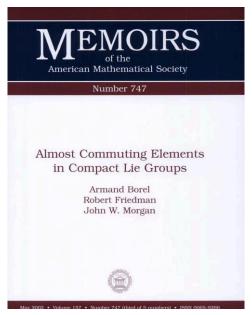


Note that

$$\int_{S^3/\Gamma} C = \begin{cases} 0 \mod 1 & \text{if } \mathbf{SO}(2k) \\ 1/2 \mod 1 & \text{if } \mathbf{USp}(2k-8) \end{cases}$$

In the latter case, the singularity is **partially frozen**.

The analysis can be carried out in a similar manner for any G, using the results in a monograph from 2002:



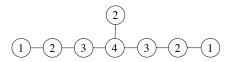
What needs to be done is the classification of flat G bundles on T^3

and the computation of their Chern-Simons invariants.

Summary of the facts:

- $CS = n/d \mod 1$ where d appears as integer labels on the Dynkin diagram of type G and gcd(d, n) = 1,
- The bundle is determined by *d* independent of *G*.

Example: $G = E_7$. Allowed d = 1, 2, 3, 4 since the Dynkin diagram is

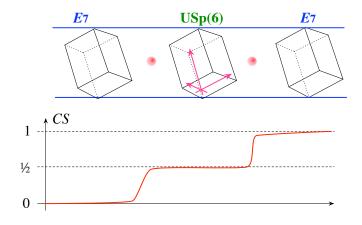


The bundle with CS = 1/2 is still

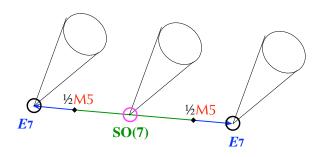
$$\begin{aligned} & \mathbf{diag}(+,+,+,-,-,-,-) \\ & \mathbf{diag}(+,-,-,+,+,-,-) \\ & \mathbf{diag}(-,+,-,+,-,+,-) \end{aligned}$$

in SO(7). In fact they are in G_2 .

E_7 has a maximal subgroup $G_2 \times \mathbf{USp}(6)$. Therefore



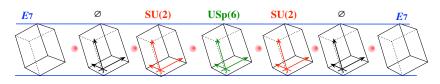
Taking the S-dual, we get

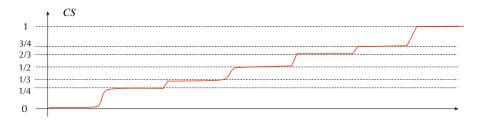


You can fractionate further, since allowed CS invariants are

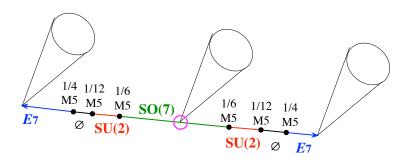
$$CS = 0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}.$$

We have

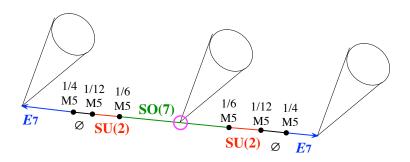




In the original duality frame we have



Note that the M5 charges are **not equally distributed**.



The rule is

$$\int_{S^3/\Gamma} C = egin{cases} 0 & ext{if E_7} \ 1/2 & ext{if $SO(7)$} \ 1/3,2/3 & ext{if $SU(2)$} \ 1/4,3/4 & ext{if $arnothing$} \end{cases}$$

Contents

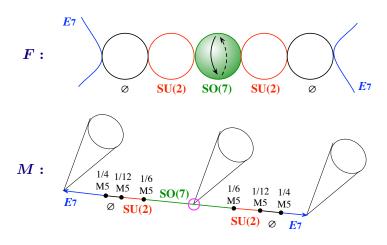
1. IIA

2. F

3. M

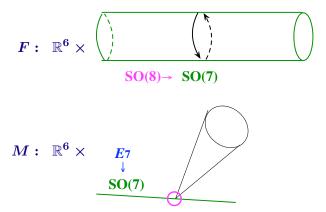
4. Duality

So we now have two ways to understand fractional M5s on ALE singularities:



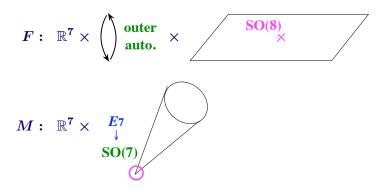
How are they related? [YT,1508.06679] [email discussions with A. Tomasiello]

We just have to show the equivalence of



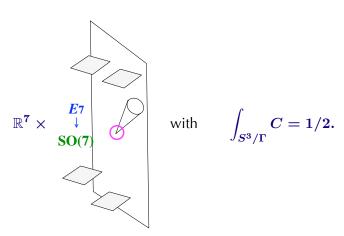
The rest is just a fiber-wise application of this duality.

We just have to show the equivalence of

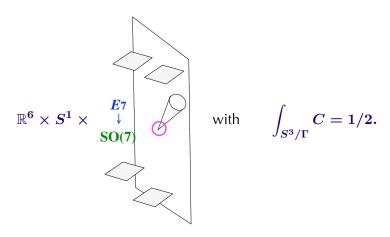


Let's start from the M-theory side:

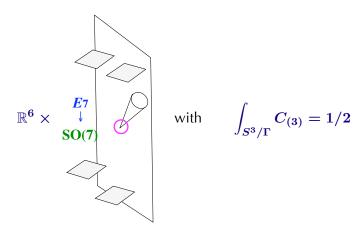
Embed it in an elliptic fibration:



Compactify it on S^1 , which we enlarge again at the last step:

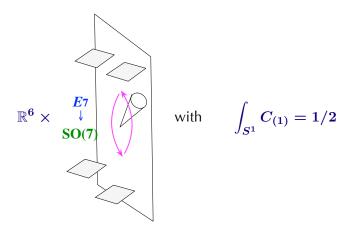


Reduce it to IIA:



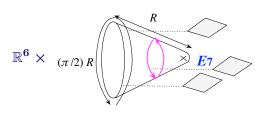
where $C_{(3)}$ is now the RR 3-form potential

Take the double T-dual:



where $C_{(1)}$ is now the RR 1-form potential.

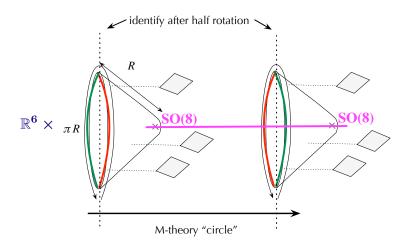
Recall that E_7 singularity is metrically a cone with opening angle $\pi/2$



with

$$\int_{S^1} C_{(1)} = 1/2.$$

When lifted to M-theory, this becomes



The opening angle should be π , so the singularity should be SO(8). The half-rotation involves \mathbb{Z}_2 outer-auto. of SO(8), thus giving SO(7).

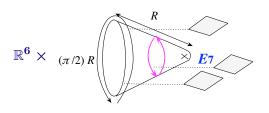
$\mathbf{SL}(2,\mathbb{Z})$ monodromies also match:

$$egin{aligned} g_{E_7} &= egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} \ g_{\mathbf{SO}(8)} &= egin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix} \end{aligned}$$

and we have

$$g_{\mathbf{SO}(8)} = g_{E_7}^{2}.$$

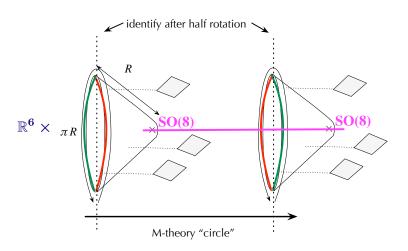
So the lift to M-theory of



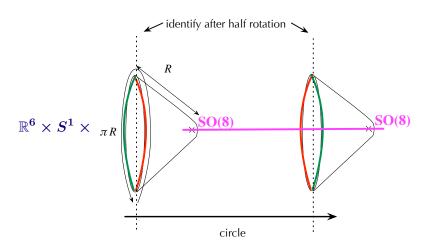
with

$$\int_{S^1} C_{(1)} = 1/2.$$

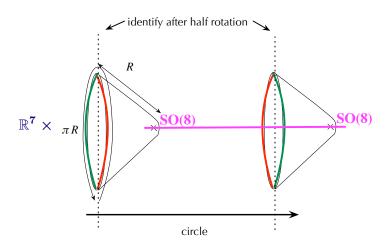
is M-theory on



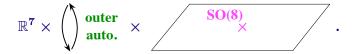
that is F-theory on



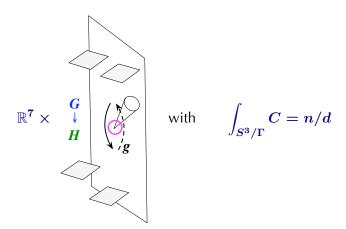
Making S^1 infinitely large, we have F-theory on



which was what we want to have:

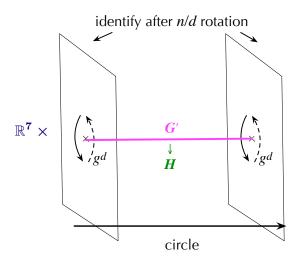


In general, M-theory on



is dual to

F-theory on



So, given G and r = n/d, there are two different ways to determine the gauge group H:

In M-theory, the steps are:

- Take the flat **G**-bundle **P** on T^3 with CS = r.
- Let G_P be the unbroken subgroup.
- Then H is the Langlands dual of G_P .

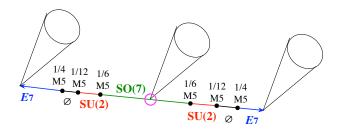
In F-theory, the steps are:

- Take the corresponding $\mathbf{SL}(2,\mathbb{Z})$ monodromy g.
- Let $g' = g^d$, and take the corresponding group G'.
- Take the invariant part H of G' under the outer-automorphism \mathbb{Z}_d .

They always agree!

Performing this duality fiber-wise, we have established the relation between F-theory on

and M-theory on



That's all what I wanted to say today.