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With two fantastic collaborators...

Yasunori Lee Kantaro Ohmori
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We studied how higher symmetries

i.e. 1-form symmetries, 2-groups and their anomalies

match across the 4d N=1 duality of Intriligator and Seiberg,

between so(2nc) ↔ so(2nf − 2nc + 4) with 2nf flavors.
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It took us almost two years of thinking on-and-off ...

which had many ups and downs (but mostly downs) ...

which I would like to recount, but no!

Let’s proceed.

4 / 60



I will review

• 1-form symmetries and 2-groups

• Intriligator-Seiberg duality

and then

• describe how they are combined.

There would be a lot of overlaps with Sakura’s talk
earlier in this conference.
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Higher symmetries

6 / 60



Symmetry g ∈ G in 4d can be visualized as

an operator O crossing a 3d wall labeled by g.

Take G = Z2. If O is odd,

it gets multiplied by −1 when crossing the wall.
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Can consider “symmetry” acting on a line operator L,
rather than a point operator O.

Captured by a 1d world-line crossing a 2d wall.
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looks differently depending on how to project it:
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A p-form symmetry is a “symmetry” which acts on p-dim’l objects

0-form symmetry

1-form symmetry

[Gaiotto-Kapustin-Seiberg-Wilett, 1412.5148]
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You know that 0-form symmetry groups can be extended:

0 → H → Γ → G → 0.

1-form symmetry can also extend 0-form symmetry:

0 → A[1] → Γ → G → 0

where Γ is now a mixture of 0-form and 1-form symmetry,
often called a 2-group.

The 4d gauge theory case was first found in [Hsin-Lam, 2007.05915]
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Enough with abstract non-sense!

Let’s see some examples.
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Maxwell = pure SO(2) gauge theory has

• Electric Z2 1-form symmetry:
(−1)q when crossing a worldline of electric charge q,

• magnetic Z2 1-form symmetry:
(−1)m when crossing a worldline of magnetic chargem
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(−1)q when crossing a worldline of electric charge q.
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(−1)q when crossing a worldline of electric charge q.

exp(2πiq

∫
C
A⃗ · dx⃗) 7→ exp(2πiq

∫
C′
A⃗ · dx⃗)(−1)q

This means that the black wall realizing the electric Z2 1-symmetry has
half the flux of the magnetic quantum

B⃗ =

∮
A⃗ · dx⃗ =

∫
C
A⃗ · dx⃗−

∫
C′
A⃗ · dx⃗ = ±

1

2
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(−1)m when crossing a worldline of magnetic chargem.
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(−1)m when crossing a worldline of magnetic chargem.

This means that the green wall realizing the magnetic Z2 1-symmetry
has the factor

exp(πi

∫∫
B⃗ · dσ⃗)
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Wall for electric Z2 1-symmetry Wall for magnetic Z2 1-symmetry

has B⃗ = ±
1

2
around it exp(πi

∫∫
B⃗ · dσ⃗)

Problematic if both walls are inserted at the same time,
since two 2d surfaces intersect at points in 4d.
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If depicted in one lower dimension,

You can’t tell if the phase is which of

e±πi/2 = +i ? or −i ?

This is a {±1}-valued mixed anomaly
between electric and magnetic Z2 1-form symmetries.
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Let us next consider pure SO(2n) gauge theory, which also has

• Electric Z2 1-form symmetry:

A Wilson line in rep. R of SO(2n) has charge q = 0, 1

when −1 ∈ SO(2n) acts as (−1)q

• Magnetic Z2 1-form symmetry:

’t Hooft lines carry Z2 charge given by
∫
S2

w2,

where w2 is the Stiefel-Whitney class of SO(2n)

controlling whether the bundle lifts to Spin(2n).
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Also for the pure SO(2n) gauge theory, there can be a mixed anomaly:

where the partition function is ambiguous by a sign (−1)n.

This can be found by breaking SO(2n) → SO(2)n.

Each SO(2) contributes by (−1) → (−1)n in total.
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SO(2n) theory has magnetic Z2 1-form symmetry,

which measuresm =

∫
S2

w2.

Gauge this magnetic Z2 1-form symmetry

→ charged lines withm 6= 0 removed

→ all configurations liftable to Spin(2n)

→ becomes the Spin(2n) theory.
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Pure Spin(2n) theory has electric 1-form “center symmetry”,
which is given by:

center of Spin(2n) =

{
Z2 × Z2 (n: even)

Z4 (n: odd)
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For pure Spin(2n) and SO(2n) theories, we have

Spin(2n) SO(2n)

n: even Z2 × Z2 Z2 × Z2

without anomaly without anomaly

n: odd Z2 ⊂ Z4 Z2 × Z2

with anomaly

where Z4/Z2 = Z2, i.e.

0 → Z2 → Z4 → Z2 → 0.

gauge Z2

gauge Z2

Note that these are formal features independent of specific models.
[YT, 1712.09542]

(Every symmetry on this slide is 1-form.)
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I think we got some good ideas on 1-form symmetries.

Let us move on to 2-groups.

We consider Spin(2nc) gauge theory
with 2nf flavors in the vector representation.

It has su(2nf) flavor symmetry.

What is the 1-form symmetry?
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The center of Spin(2nc) is Z2 × Z2 or Z4.

In particular,
spinor⊗ spinor = vector

in the latter.

But the Wilson line in the vector representation can now be screened by
dynamical particles, i.e.

vector screen−−−→ trivial

Only the Z2 quotient group survives,
generated by Wilson lines in the spinor representation.

−→ only Z2 1-form symmetry remains.
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But wait!

The dynamical particle used in screening is in the

vector⊗ fundamental

representation of Spin(2nc) × SU(2nf).

−1 ∈ SU(2nf) acts nontrivially on it.
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For Spin(2nc) with nc even and with 2nf flavors:

(gauge spinor)⊗2 = gauge singlet,

For Spin(2nc) with nc odd and with 2nf flavors:

(gauge spinor)⊗2 = gauge vector screen−−−→ flavor fundamental

When nc is odd,
1-form symmetry and 0-form flavor symmetry are intrinsically mixed.

Known as a 2-group symmetry.

Formalizing it mathematically is a bit tiresome,
but the physics content is basically what I just described.
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In other words:

SU(2nf) 0-form flavor symmetry

extract−−−→ effective flavor Z2 1-form symmetry under which
favor fundamental Wilson lines are charged

Then:

0 → electric Z2 1-form symmetry

→
{

Z2 × Z2 (nc: even)
Z4 (nc: odd)

}
→

flavor Z2 1-form symmetry → 0
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For Spin(2nc) and SO(2nc) theories with 2nf scalar flavors,

Spin(2n) SO(2n)

n: even Z2 × Z2 Z2 × Z2

without anomaly without anomaly
n: odd Z2 ⊂ “Z4” Z2 × Z2

with anomaly

where
Z2: electric 1-form
Z2: magnetic 1-form
Z2: “flavor” 1-form for {±1} ⊂ SU(2nf)

and
“Z4”/Z2 = Z2.

(Note that fermions will change many things,
due to potential anomalies.)

gauge Z2

gauge Z2
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Note that this is not very different from the case of
pure Spin(2n) and SO(2n) theories:

Spin(2n) SO(2n)

n: even Z2 × Z2 Z2 × Z2

without anomaly without anomaly
n: odd Z2 ⊂ Z4 Z2 × Z2

with anomaly

where Z4/Z2 = Z2.

gauge Z2

gauge Z2

When there are 2nf flavors, we just re-interpret
the blue Z2 part as coming from {±1} ⊂ SU(2nf).
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Intriligator-Seiberg duality
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[Intriligator-Seiberg hep-th/9503179] found the duality

4d N=1 so(2nc) with 2nf flavors

l

4d N=1 so(2nf − 2nc + 4) with 2nf flavors

Many checks: 0-form symmetries, anomaly polynomial, SCI ...

How about the global form of the gauge group?
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An early work [Strassler hep-th/9709081] suggested that
SO ↔ Spin, but did not quite uncover the whole story.

Strassler added massive spinor flavors on the electric side
and studied how it affects the magnetic side.

If we take the infinite mass limit, we can re-interpret his analysis
as a study of spinor Wilson line operators.

A streamlined analysis was given in [Aharony-Seiberg-YT 1305.0318].
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There are in fact three types of so QCD:

Spin SO+ SO−
has Wilson line has ’t Hooft line has dyonic line
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Under the Intriligator-Seiberg duality,

Higgsed vacua ↔ confined vacua

In Higgsed vacua, we have

Wilson ’t Hooft dyonic
perimeter area area

while in the confined vacua, we have

Wilson ’t Hooft dyonic
area area perimeter

.

(The red part might sound counter-intuitive,
but is due to a subtle behavior of vacuum branches of so(4))
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This means that the duality acts as

Wilson ’t Hooft dyonic
Spin(2nc) SO+(2nc) SO−(2nc)

Wilson ’t Hooft dyonic
Spin(2n′

c) SO+(2n′
c) SO−(2n′

c)

This was tested by SCI on (S3/Zk) × S1 [Razamat-Willett 1307.4381]

(It comes with a Mathematica code to generate SCIs. Nice!)
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Does the 2-group structure agree?

That is our question.
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Higher symmetries in
Intriligator-Seiberg duality
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Let us remind our discussion of Spin(2nc) theory with 2nf flavors.

(gauge spinor) ⊗ (gauge spinor)

=

{
gauge singlet (nc: even)

gauge vector screen−−−→ flavor fundamental (nc: odd)

meaning that the Z2 1-form symmetry and the su(2nf) 0-form symmetry{
remain direct product (nc: even)

form nontrivial 2-group (nc: odd)
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How about the SO(2nc)± theory with 2nf flavors?

Neglecting the flavor symmetry, the 1-form symmetry is Z2, because

(charge 1 ’t Hooft line)⊗2 = charge 2 ’t Hooft line

−−−−−−−−−−−−−−−−−−→
screening by a dynamical monopole

trivial line

Therefore, the Z2 1-form and the flavor 0-form{
remain a direct product

combine into a nontrivial 2-group

}
depending on whether the dynamical monopole has{

charge +1
charge −1

}
under −1 ∈ SU(2nf).
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The point is that there can be fermionic zero modes
on dynamical monopoles, potentially inducing flavor charges on them.

A famous example is N=2 su(2) with nf flavors.

Each monopole carries fermionic zero modes ψi=1,...,2nf .

They are quantized into operators satisfying {ψi, ψj} = δij ,
and behave as gamma matrices of so(2nf).

So the monopoles transform in the spinor of so(2nf).

Our situation is similar.
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So, our question is now the following:

In SO(2nc)± with 2nf flavors,
how do dynamical monopoles
transform under −1 ∈ SU(2nf)?

The way to answer it is quite fun in itself,
but I do not go into detail,
as it is something you can do if you live long enough.
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We didn’t know how to do it in the non-abelian theory itself,
so we choose to break SO(2nc) → SO(2)nc

by introducing an adjoint scalar Φ and giving it a generic vev.

Then you have ’t Hooft-Polyakov monopoles,
zero modes on which can be studied via Callias index theorem.

Done.

The result: the flavor charge of the monopole under −1 ∈ SU(2nf) is{
(−1)nf for SO(2nc)+ theory

(−1)nf+nc for SO(2nc)− theory
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We conclude the following.
The Z2 1-form and the flavor symmetry become:

(nc, nf) Spin SO+ SO−

(even, even) product product product

(odd, even) 2-group product 2-group

(even, odd) product 2-group 2-group

(odd, odd) 2-group 2-group product

The I-S duality acts as so(2nc) ↔ so(2nf − 2nc + 4),

swaps Spin ↔ SO−, and keeps SO+.
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A subtle fermion anomaly
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(nc, nf) Spin SO+ SO−

(even, even) product product product

(odd, even) 2-group product 2-group

(even, odd) product 2-group 2-group

(odd, odd) 2-group 2-group product

‘Product’ means that the Z2 1-form symmetry and
the Z2 1-form symmetry for −1 ∈ SU(2nf) remains separate.

But there can be a mixed anomaly between these two Z2 1-form
symmetries.
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(nc, nf) Spin SO+ SO−

(even, even) product product product

(odd, even) 2-group product 2-group

(even, odd) product 2-group 2-group

(odd, odd) 2-group 2-group product

How do we know which ‘product’ has anomaly and which doesn’t?
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(nc, nf) Spin SO+ SO−

(even, even) Z2 × Z2 Z2 × Z2 Z2 × Z2

(odd, even) Z2 ⊂ Z4 Z2 × Z2 Z2 ⊂ Z4

(even, odd) Z2 × Z2 Z2 ⊂ Z4 Z2 ⊂ Z4

(odd, odd) Z2 ⊂ Z4 Z2 ⊂ Z4 Z2 × Z2

How do we know which ‘Z2 × Z2’ has anomaly and which doesn’t?
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(nc, nf) Spin SO+

(even, even) Z2 × Z2 Z2 × Z2

(odd, even) Z2 ⊂ Z4 Z2 × Z2

(even, odd) Z2 × Z2 Z2 ⊂ Z4

(odd, odd) Z2 ⊂ Z4 Z2 ⊂ Z4

How do we know which ‘Z2 × Z2’ has anomaly and which doesn’t?

gauge Z2

gauge Z2
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But as I reviewed, it is a general fact that

Z2 × Z2 Z2 × Z2

without anomaly without anomaly

Z2 ⊂ Z4 Z2 × Z2

without anomaly with anomaly

gauge Z2

gauge Z2
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Therefore, it must be that

(nc, nf) Spin SO+

(even, even) Z2 × Z2 Z2 × Z2

without anom. without anom.

(odd, even) Z2 ⊂ Z4 Z2 × Z2

without anom. with anom.

(even, odd) Z2 × Z2 Z2 ⊂ Z4

with anom. without anom.

(odd, odd) Z2 ⊂ Z4 Z2 ⊂ Z4

with anom. with anom.

gauge Z2

gauge Z2
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(nc, nf) Spin

(even, even) Z2 × Z2

without anom.

(even, odd) Z2 × Z2

with anom.

The background for Z2 1-form is w2

controlling the lift from SO(2nc) to Spin(2nc),

The background for ‘flavor Z2 1-form’ is a2
controlling the lift from SU(2nf)/Z2 to SU(2nf).
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(nc, nf) fermion in 2nc ⊗ 2nf

(even, even) without anom.

(even, odd) with anom.

This means that the bifundamental fermion
in 2nc ⊗ 2nf of [SO(2nc) × USp(2nf)]/Z2

should have the anomaly ∫
5d
a2βw2

when nc is odd.

This is a rather subtle global anomaly!
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In the past ten years, the theory of global anomalies was perfected
using spin bordism groups.

In principle, given a fermion transforming in a representation of a group,
we should now be able to compute its anomaly using the η invariant.

Then, in principle, higher symmetry structures of the theories in question
should directly follow.

But it is exactly a thing which is言之易而行之難 (easier said than done).
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The spin bordism group of [SO(2nc) × USp(2nf)]/Z2

is hard to compute.

Even the cohomology of [SO(2nc) × USp(2nf)]/Z2

is hard to obtain.

Even supposing that the bordism group is known,
finding concrete manifolds with bundles representing them
is extremely hard.

Evaluating the η invariants is hard.
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We struggled with these issues for more than a year.

Various partial results slowly suggested us the big picture.

Only in the last few months,
we came up with the indirect method I described today.

Anyway...
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So the big picture requires that

(nc, nf) fermion in 2nc ⊗ 2nf

(even, even) without anom.

(even, odd) with anom.

where the anomaly is ∫
5d
a2βw2.

We were able to confirm this for [SO(4) × SU(2)]/Z2.

For more general cases, we could only perform checks.

If you’re interested, please have a look at the paper.
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Summary
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We reviewed 1-form symmetries and 2-groups.

We studied them in the case of so(2nc) with 2nf flavors.

They are mapped as expected under the Intriligator-Seiberg duality.

Our results indicate that there are subtle global anomalies of fermions.

Any questions?
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