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| am usually categorized as a string theorist.

Is what | do physics, or mathematics, or mathematical physics?

[ only give a light-hearted analysis of this issue.

For more incisive discussions,

see essays such as Jaffe-Quinn: Theoretical mathematics
https://arxiv.org/abs/math/9307227

and Thurston: On proof and progress in mathematics

https://arxiv.org/abs/math/9404236
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Is there any use in something which is not rigorous
and not related to the real world at the same time?

| want to say yes...

Well, | got invited to give a colloquium here by doing that!
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Does it actually work?

In some cases, yes!
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Once upon a time (meaning that it was in the 1980s),
mathematicians were counting the numbers of spheres

in a particular six-dimensional space, called the quintic Calabi-Yau.

size  number person
1 2875 J. Harris  (1979)
2 609250 S.Katz (1986)

It was a laborious process.

| don’t know why they were interested in this question!
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Around the same time, superstring theory was born.
It says the world is 9 + 1 dimensional.

To match with the fact that our world looks 3 + 1 dimensional,
we need to curl up the unwanted 9 — 3 = 6 dimensions
into a very, very small space.

It was found that the same Calabi-Yau space is a nice choice
for this purpose.

So physicists started studying them too.
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Slices of the six-dimensional quintic Calabi-Yau
you often see in books and TVs.

https://www.wolframcloud.com/obj/yuji.tachikawa/Published/calabi_yau_based_on_jakes_code3.nb
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String theorists P. Candelas, X. de la Ossa, P. Green and L. Parkes
found in early 1990 a vastly quicker but non-rigorous method
to compute the number of spheres

in the same quintic studied by mathematicians.

Recall:

size  number  person

ny = 2875 J. Harris  (1979)
ny = 609250 S.Katz (1986)
ng = 22?
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The method of four string theorists involved
differential equations and expanding the solutions in a Taylor series,
as physicists would naturally do. They predicted

ns = 317, 206, 375.

It fell to mathematicians G. Ellingsrud and S. A. Streamme to test it.
In June 1990, they got

ns = 2,682, 549, 425.

There was a joint math-physics workshop in May 1991
to resolve the issue, so that each side can learn the other side.

There was some progress but the issue remained...
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Finally in July 1991, Ellingsrud and Stremme found a bug in their
computation, and reproduced the prediction by physicists.

ni™ = 317,206, 375.
ngih = 317,206, 375.

This was when the mathematical field called
the mirror symmetry was born.

(Details taken from P. Galison, Mirror symmetry, in “Growing
Explanations,” M. Norton Wise ed., Duke University Press, 2004.
https: //doi. org/lO .1515/9780822390084-002

| thank D. R. Morrison for information.)
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There are many other examples of such interactions
between mathematics and theoretical physics.

| was lucky to have been involved in one, called
the Mathieu Moonshine.
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arXiv.org > hep-th > arXiv:1004.0956

High Energy Physics - Theo

Help | Advance:

[Submitted on 6 Apr 2010 (v1), last revised 25 Jun 2010 (this version, v2)]

Notes on

Tohru Eguchi,

the K3 Surface and the Mathieu group M_24

Hirosi Ooguri, Yuji Tachikawa

We point out that the elliptic genus of the K3 surface has a natural decomposition in terms of
dimensions of irreducible representations of the largest Mathieu group M_24. The reason is yet a

mystery.

Comments:
Subjects:

Journal reference:
DOl
Cite as:

10 pages. v2: published version

High Energy Physics - Theory (hep-th); Algebraic Geometry (math.AG); Group Theory (math.GR);
Quantum Algebra (math.QA)

Exper.Math.20:91-96,2011

10.1080/10586458.2011.544585

arXiv:1004.0956 [hep-th]

(or arXiv:1004.0956v2 [hep-th] for this version)
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https://arxiv.org/abs/1004.0956

arXiv.org > math > arXiv:1211.5531

Terry Gannon
(Submitted on 23 Nov 2012 (v1), last revised 15 Mar 2013 (this version, v2))

Eguchi, Ooguri and Tachikawa have observed that the elliptic genus of type Il
string theory on K3 surfaces appears to possess a Moonshine for the largest
Mathieu group. Subsequent work by several people established a candidate for
the elliptic genus twisted by each element of M24. In this paper we prove that the
resulting sequence of class functions are true characters of M24, proving the
Esuchi—OoEuri—Tachikawa conjecture. We prove the evenness property of the
multiplicities, as conjectured by several authors. We also identify the role group
cohomology plays in both K3-Mathieu Moonshine and Monstrous Moonshine; in
particular this gives a cohomological interpretation for the non-Fricke elements
in Norton's Generalised Monstrous Moonshine conjecture. We investigate the
intriguing proposal of Gaberdiel-Hohenegger-Volpato that K3-Mathieu
Moonshine lifts to the Conway group Col.
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arXiv.org > math > arXiy:2006.02922

Mathematics > Algebraic Topology

[Sub

Topological Mathieu Moonshine

Help | Advanced

Theo Johnson-Freyd

We explore the Atiyah-Hirzebruch spectral sequence for the !mf'[%]—cohomology of the
classifying space BM,,4 of the largest Mathieu group Mo, , twisted by a class

w€E H“(BMM;Z[%]) = Z5. Our exploration includes detailed computations of the Z3 -
cohomology of M,4 and of the first few differentials in the AHSS. We are specifically interested in
the value of tmf,,;(BMZA)[;—] in cohomological degree —27. Our main computational result is that
rmf,,,’27 (BMu)[;—] = 0 when @ # 0. For comparison, the restriction map

mf,> (BMy2)[ 1] — tmf > (pH)[ ] & Z; is nonzero for one of the two nonzero values of .

Our motivation comes from Mathieu Moonshine. Assuming a well-studied conjectural

relationship b TMF and supersy ic field theory, there is a canonically-
defined Co, -twisted-equivariant lifting [Vﬂ:] of the class {24A} € TMF~*(pt), where Co,
denotes Conway's largest sporadic group. We conjecture that the product [\7'/:]», where

v € TMF~3(pi) is the image of the generator of fmf ~*(pt) & Z,s, does not vanish Co, -
equivariantly, but that its restriction to M, -twisted-equivariant TMF does vanish. This
conjecture answers some of the i in Mathieu M hine: it implies the existence of a
minimally supersymmetric quantum field theory with M, y, whose twisted-and-twined
partition functions have the same mock modularity as in Mathieu Moonshine. Our AHSS
calculation establishes this conjecture "perturbatively” at odd primes.

An appendix included mostly for entertainment purposes discusses "£-complexes" and their
relation to SU(2) Verlinde rings. The case £ = 3 is used in our AHSS calculations.
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| would like to give some detail of this Mathieu Moonshine,
but it would be a long way to go. | need to tell you

® what is quantum field theory,

® what is string theory,

what are the Mathieu groups, and

what is the moonshine.

Let me try.
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What is Quantum Field Theory = QFT ?

® Describes quantum properties of fields, where
o fields are anything which extend along space and time, such as

® electromagnetic fields (=light), crystal vibration, electron fields ...
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The prototypical example is the Quantum Electrodynamics (QED):

® describes quantized electromagnetic fields
interacting with charged particles

® was established around 1950s

® with many developments since then
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Theory and experiment match extremely well in QED.
The prime example is the anomalous magnetic moment of electron:

atheory = 0.01159 652 181...
a®Periment - — 0 01159 652 181...

e
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| can say that:

® QFT is well researched,
® QFT predicts quantities with high precision, and

® QFT agrees very well with experiment.

But it is mathematically incomplete, in that
no satisfactory formalization is known.

Quantum mechanics and general relativity are OK for mathematicians,
but QFT is not.
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It is analogous to the situation in the past:

Ancient Egyptians could build pyramids,
although they had not formalized geometry.

Physicists can compute things although they have not formalized QFT.

The flip side of the coin is that QFT might produce
new results in mathematics.
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Let us move on to string theory.

It is a quantum theory of strings moving relativistically. It turns out that:

® it is consistent only in 9+1 dimensions

® it automatically contains quantum gravity

Reconciling gravity and quantum mechanics is one of the long-standing
problems in physics. There are many competing approaches.
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There are many who are passionately for string theory,
and also many who are passionately against string theory.

Does it describe the real world? | do not know.
For me what matters is whether it is Platonically consistent.

It seems it is. And many mathematical predictions have come out of it.
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Suppose you want to study strings moving in a Calabi-Yau...

Please excuse my bad drawing.

It is done in terms of 1+1 dimensional QFT on the worldsheet.
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Mathieu Moonshine concerns strings moving in K3 space.

It is a closed four-dimensional space satisfying

1

Eem’aﬁRaﬁpd = Ryuvpo

which is not completely flat.

You can think of it as a space which is half flat,
in a precise technical sense.

In particular, it solves the vacuum Einstein equation
with zero cosmological constant.
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K3 is named by André Weil, honoring three mathematicians
Kahler, Kummer, and Kodaira, and also after the beautiful mountain K2:

https://en.wikipedia.org/wiki/K2
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The origin of Mathieu Moonshine goes back to the work
by Eguchi and Ooguri in 1989.

T. Eguchi

%%&lli W [ Il

H. Ooguri

Ooguri was preparing his PhD thesis under Eguchi,
studying strings moving in K3.
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A central result in his PhD thesis is this:

so are the numbers Ny ; — 2N} p.

F(r) = 90q + 462¢* + 1540¢° + 4554¢* + 115924°
+ 27830¢° + 616864" + 131100¢% + - - -

This is basically the partition function of a string moving in K3.

What does it mean?

https://ooguri.caltech.edu/documents/8002/phd_thesis.pdf
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To understand it, we now need to turn to
the role of symmetry in quantum mechanics.
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Everybody will learn / learned that the angular momentum
in quantum mechanics takes the value

jz - _ja_j+1,--'7j_17j'
2j7+1 choices

So
J=0 = j,= 0
j = % = jz = _%9 +%
1=1 = j,= —1,0,+1
Jj= % = Jz = _gv_%, +%a +%

For integer j, there are also traditional names

J
name
degeneracy

=ln |l O
W |-
O QN
NSNS
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The spectrum of a hydrogen atom, to the zeroth approximation, looks
like this:

00r 4 4p 4d 4f
oal 38 3p 3d
2s 2p
—04
-06
08|
0]
ro1s
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The degeneracy is related to the symmetry.

The angular momentum operators L, . are
infinitesimal generators of the three dimensional rotation group so(3),
the symmetry of the hydrogen atom.

representation= 7
name
dimension=degeneracy

=l O
WS |~
Ol QN
|| w

The total angular momentum j specifies
how the symmetry acts on the quantum states.

Equivalently, it specifies the representation of the symmetry group.

The degeneracy is also known as the dimension.
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The spectrum of a hydrogen atom, to the zeroth approximation,
shows accidental degeneracies in addition to the rotational symmetry:

0.0
2=143+5+7__ [ 38 4p 4d 4f
- [
3¥=143+5 35 3p 3d
-0.2
22=1+3
2s 2p
—04}+
-06
-0.8
12=1 10
1s

It is known to reflect a hidden 4-dimensional rotational symmetry so(4)
[Pauli, Fock, ...]
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The rotation group is a continuous group.

There are also finite groups, e.g. the symmetry As of

which contains 60 elements.
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For the symmetry As to act on quantum mechanical systems,
it needs to be represented by matrices.

As 29— p(g) =

The size is known as the dimension, which is three in this example.
Irreducible representations and their dimensions of As are known:

name ‘A Thn T G H
dimension‘l 3 3 4 5

(There are two different irreducible representations
with the same dimension 3).
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We physicists are perfectly happy studying various concrete systems with
various concrete symmetries. This is the schematic structure of Cgy, the
fullerene, from Wikipedia:

https://en.wikipedia.org/wiki/Fullerene
The properties of As is very useful (and essential) when studying its
electronic properties, etc.
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LUMO (3

ey (1) (ZT)

‘HOO

Figure 7: Schematic of the electronic structure of C, as calculated by the Hiickel model [80, 81] and its possible electronic excitation
transitions experimentally observed in this study. The electronic excitation and emission transitions were numbered in the bracket as (1) to

(5) and (6) to (7), respectively.
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from T. E. Saraswati et al., The Study of the Optical Properties of C60 Fullerene

in Different Organic Solvents, Open Chem. 17 (2019) 119-1212

https://doi.org/10.1515/chem-2019-0117
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Mathematicians think differently:

Let’s classify all possible symmetries, say all finite groups.

Any finite group is made out of finite simple groups,
just as any integer is a product of prime numbers.

So they say: let us classify finite simple groups first.
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Classification of finite simple groups:

® Cyclic group of prime order Z,, p = 2,3, 5, . ..
® Alternating groups As, As, ...

® Finite groups of Lie type,
obtained by considering continuous groups over finite fields,

® and finally, the 26 sporadic groups.
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Classification of finite simple groups:

The proof is said to be the longest in the history of mathematics.
Originally announced to be complete in the late 1970s to early 1980s
with papers and preprints said to total 5000 pages.

https://doi.org/10.1090/50273-0979-1979-14551-8

A streamlined rewrite of the entire proof in a single series of volumes is
going on for decades. It already has about 3500 pages,
but is yet not complete.

https://www.ams.org/publications/authors/books/postpub/surv-40

https://www.ams.org/journals/notices/201806/rnoti-p646.pdf
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Classification of finite simple groups:

® Cyclic group of prime order Z,, p = 2,3, 5, ...
® Alternating groups As, Asg, ...

® Finite groups of Lie type

® and finally, the 26 sporadic groups.

The last two series of finite groups of Lie type were found by
Rimhak Ree (0|28}, Z=#RE) in 1960/1961.

https://doi.org/10.1090/S0002-9904-1960-10523-X
https://doi.org/10.1090/50002-9904-1961-10527-2

https://dx.doi.org/10.5169/seals-685366
They are called Ree groups.

Lie groups and Ree groups are difficult to distinguish for Koreans and
Japanese alike, since we don’t have distinctions between /r/ and /I/...
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(Prof. Rimhak Ree, 1922-2005)

http://news.khan.co.kr/kh_news/khan_art_view.html?artid=201510302151325

https://horizon.kias.re.kr/13561/
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Classification of finite simple groups:

® Cyclic group of prime order Z,, p = 2,3, 5, . ..
® Alternating groups As, As, ...

® Finite groups of Lie type

® and finally, the 26 sporadic groups.
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Names of the sporadic groups [edi

Five of the sporadic groups were discovered by Mathieu in the 1860s and the other 21 were found
between 1965 and 1975. Several of these groups were predicted to exist before they were
constructed. Most of the groups are named after the mathematician(s) who first predicted their
existence. The full list is:

. Mathieu groups M1, My, Moo, Mog, Moy

. Janko groups Jy, Jo or HJ, J3 or HJM, Jg M

. Conway groups Co; or Fo_, Coo, Cog Y o B 2]

. Fischer groups Fiap, Fios, Fins’ OF F3, HN

. Higman-Sims group HS Co3  Coz g, " 7

. McLaughlin group McL ve WK M%Z

. Held group He or F7, or F7 N A 7 -

. Rudvalis group Ru

. Suzuki sporadic group Suzor Fz_ e M2 Ru) a1 (B

- O'Nan group ON Subgroup relations between the sporadic groups &7

. Harada—Norton group HN or Fs, or Fg
. Lyons group Ly

. Thompson group Thor Fg3or F3

. Baby Monster group Bor Fp, or Fp

. Fischer—Gries§ Monster group M or F4
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When it comes to the data of finite groups, nothing can beat the ATLAS:

LR (L

OF
I—‘IliITE GROUPS

H CONWAY
L. (CoULRSTS NS
5P N ORYIROIN
A PA RKER
VAL WAISIESEOIN

48/69



49/69



Although not as comprehensive as the Atlas,
this Japanese math encyclopedia is also quite useful:

which has tables of representations of some finite groups.
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Mathieu groups: Mll/ M12, M22, M23 and M24
Found by Mathieu in 1861 and 1873.
The largest of them, M2y, has 244823040 elements.

It is the symmetry of the extended binary Golay code,
introduced in 1949, only one year after
Shannon introduced the information theory.
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Notes on Digital Coding*

The consideration of message coding as a.
means for approaching the theoretical capac-
ity of a communication channel, while reduc-
ing the probability of errors, has suggested
the interesting number theoretical problem
of devising lossless binary (or other) coding
whemes serving to insure the reception of a
torrect, but reduced, message when an up-
per limit to the number of transmission er-
ors is postulated.

An example of lossless binary coding is
treated by Shannon! who considers the case
o blocks of seven symbols, one or none of
which can be in error. The solution of this
asecan beextended to blocksof 2»—1-binary
symbols, and, more generally, when coding
sthemes based on the prime number 2 are
enployed, to blocks of #7—1/p—1 symbols
which are transmitted, and received with
wmplete equivocation of one or no symbol,
tach block comprising # redundant symbols
designed to remove the equivocation. When
encoding the message, the 1 redundant sym-
bols 2 are determined in terms of the mes-
sage symbols Yi from the congruent rela-
tions.

P TR

En=Xp+ PR S A
=1

In the decoding process, the /s are recalcu-
lated with the received symbols, and their
ensemble forms a number on the base p
which determines univocally the mistrans-
mitted symbol and its correction.

In passing from # to n-+1, the matrix
with # rows and p»—1/p—1 columns formed

0 (mod £).

+ Beceived by the Institute, February 23, 1
s, o5 piathesiationl Soecey of o
Tulmuuo..," et Svs. Tooh Toureo el 37, 4185

with the coefficients of the X’sand ¥’sin the
expression above is repeated $ times hori-
zontally, while an (2-+1) st row added, con-
sisting of p"—1/p—1 zeroes, followed by as
many one's etc. up to $—1; an added column
of # zeroes with a one for the lowest term
completes the new matrix for n+41.

If we except the trivial case of blocks of
25+1 binary symbols, of which any group
comprising up to S symbols can be received
in error which equal probability, it does not
appear that a search for lossless coding
schemes, in which the number of errors is
limited but larger than one, can be sys-
tematized so as to yield a family of solutions.
A necessary but not sufficient condition for
the existence of such a lossless coding scheme
in the binary system is the existence of three
or more first numbers of a line of Pascal’s tri-
angle which add up to an exact power of 2. A
limited search has revealed two such cases;
namely, that of the first three numbers of the
90th line, which add up to 2 and that of the
first four numbers of the 23rd line, which add
up to 2% The first case does not correspond
to a lossless coding scheme, for, were such a
scheme to exist, we could designate by 7 the
number of E,, ensembles corresponding to
one error and having an odd number of 1's
and by 90— the remaining (even) ensem-
bles. The odd ensembles corresponding to

two transmission errors could be formed by
re-entering term by term all the conbina-
tions of one even and one odd ensemble cor-
responding each to one error, and would
number r(90—r). We should have r+4
7(90—7) =21, which is impossible for inte-
gral values of 7.

On the other side, the second case can be
coded so as to yield 12 sure symbols, and the
@mi matrix of this case is given in Table I.
A second matrix is also given, which is that
of the only other lossless coding scheme en-
countered (in addition to the general class
mentioned above) in which blocks of eleven
ternary symbols are transmitted with no
more than 2 errors, and out of which six sure
symbols can be obtained.

Tt must be mentioned that the use of the
ternary coding scheme just mentioned will
always result in a power loss, whereas the
coding scheme for 23 binary symbols and a
maximum of three transmission errors yields
a power saving of 1} db for vanishing prob-
abilities of errors. The saving realized with
the coding scheme for blocks of 2% —1 binary
symbols approaches 3 db for increasing #'s
and decreasing probabilities of error, but a
loss is always encountered when 7=3.

Marcir J. E. GoLay
Signal Corps Engineering Laboratories
ort Monmouth, N. J

TABLE I
Yi Ys Yy Yoo ¥Yu ¥ Vi Ve Yo Ye Ve
0 0 0 1 1 1 1 1012 2 0
0 1 1 0 0 i 1 12 190 2
10 1 0 1 0 12 1 0 1 2
11 0 1 0 0 1201 2 1
P00 1 1 0 0 102 %11
i1 0 0 0 1
0 1 L 0 1 0
0 1 0 1 1 0
10 0 0 1 1
0 0 1 1 0 1
G O |

Reprinted from Proc. /RE, vol. 37, p. 657, June 1949.

https://en.wikipedia.org/wiki/Marcel _J._E._Golay
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What is a code? Computers use strings of bits, such as

010110111-.--.

You can’t directly communicate them over long distance,
because transmission errors might flip bits.

You need to add redundancies so that
small number of errors per bit can be corrected.

One encoding is the Golay code,
which encodes original 12 bits into 24 bits.

It is a particularly symmetric code: the symmetry is May,
as noticed by Leech in 1967.

https://doi.org/10.4153/CIM-1967-017-0
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It was actually used in the real world. One famous example is NASA's
Voyager mission. Some of the scientific data from Jupiter was sent back
using the Golay code.

This is the actual data of Jupiter from March 1979

which | took from the NASA website.
https://voyager.jpl.nasa.gov/mission/science/jupiter/

(If you read the documents from those days carefully, you find that the

photographic image was not encoded by the Golay code, which was
considered too wasteful.)

https://ntrs.nasa.gov/api/citations/19830002051/downloads/19830002051.pdf
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Before talking about the Mathieu Moonshine,

| need to talk about the original Monstrous Moonshine.
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Modular J function

1
J(q) = p; + 196884q + 21493760g> + 864299970q¢> + - - -

is known from 19th century.
McKay noticed the following in 1978:

The new finite simple group, the Monster,
which is the largest of the sporadics,
was being constructed at that time and has order ~ 8 - 10°3.

The smallest nontrivial representation has dimension

196883
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Connects two distant branches of mathematics

J function : classical complex analysis
Monster group :  finite group

Sounded too crazy back then, and called the Monstrous Moonshine.

(The word moonshine means foolish thought.)

57769



Mostly solved around the early 1990s
[Frenkel-Lepowsky-Meurman], [Borcherds]

and many developments since then.

The proof used ideas from two-dimensional quantum field theories.
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| can finally come back to the Mathieu Moonshine.

In his PhD thesis, Ooguri computed the partition function
of a string moving in K3:

so are the numbers Ny, — 2N,,.

F(r) = 90q + 4624® + 1540¢° + 4554¢* + 11592¢°
+ 278304° + 61686¢” + 131100¢® + - - -

This means that

® the first excited state has degeneracy 90,
® the second excited state has degeneracy 462,

® the third excited state has degeneracy 1540, ...
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Around the same time, there was also the following paper:

http://eudml.org/doc/143625

Invent. math. 94, 183-221 (1988) In/ventlone&:

mathematicae
© Springer-Verlag 1988

Finite groups of automorphisms of |K3 surfaces
and the|Mathieu group |

Dedicated to Professor Masayoshi Nagata on his 60th Birthday

Shigeru Mukai

Department of Mathematics, Nagoya University, Furo-chd Chikusa-ku, Nagoya 464 Japan

which says that the possible symmetries of K3 are certain small
subgroups of the Mathieu group May4.
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http://eudml.org/doc/143625

Eguchi, his advisor, thought:

so are the numbers Ny; — 2N} .

F(r) = 90q + 462¢ + 1540¢° + 4554¢* + 11592¢°
+ 27830¢° + 61686¢" + 131100¢® + - - -

These coefficients should be related to Mathieu group.
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And nothing happened for twenty years ...
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In the meantime, | became a student of Eguchi
obtained PhD in 2006, became a postdoc ...

H. Ooguri

me

T Eguchl
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Aspen, Colorado, Aug. 6th, 2009.
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All three were in the workshop.
We revisited the question.

| said:

Why don’t we look up the table
in the Iwanami math encyclopedia?
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PhD thesis of Ooguri-san:
so are the numbers Ny ; — 2N, 0.

F(r) = 90q + 462¢® + 1540¢° + 45544¢* + 11592¢°

(23)
+ 278304° + 61686¢7 + 131100¢® + - - -
Iwanami Math Encyclopedia, 4th ed.:
#el H X 6
My, (1)* g | 123 7-36 2311 23-77 55-64 45 2245 23-45 23-45 11-21 770
(1n* g | 23-21 23-55 23-88 23-99 23-144 23-11-21 23-7-36 77-72 11-35-27
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PhD thesis of Ooguri-san:

so are the numbers Ny ; — 2N, 0.

F(r) = + 46247 + 1540¢° + 4554¢* + 11592¢°

(23)
+278304° + 6168647 + 131100¢% + - - -
Iwanami Math Encyclopedia, 4th ed.:
el H X 6
My, (1)* g | 123 7-36 23-11 23-77 55-64 lz' 22.45 23-45 23-45 11-21 770
(1n* g | 23-21 23-55 23-88 23-99 23-144 23-11-21 23-7-36 77-72 11-35-27
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PhD thesis of Ooguri-san:

so are the numbers Ny ; — 2N, 0.

_ ' 2 3 4 5
F(r) _ +[462)* + 1540¢° + 4554 + 11592¢ 23)

+ 27830¢° + 61686¢" + 131100¢° + - - -

Iwanami Math Encyclopedia, 4th ed.:

el H X 6
My, (1)* g | 123 7-36 23-11 23-77 55-64 lE' 22.45 2345 23-45|11-21|770
(1n* g |23-21 23-55 23-88 23-99 23.144 23-11-21 23.7-36 77-72 11-35.27
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PhD thesis of Ooguri-san:

so are the numbers Ny ; — 2N, 0.

F(r) = +2 +[1540¢° + 4554¢* + 11502¢° o)

+ 27830¢° + 61686¢" + 131100¢° + - - -

Iwanami Math Encyclopedia, 4th ed.:

#el H X 6
Moy, (1) g | 123 7-36 23-11 23-77 55-64 |£| 22.45 2345 23-45|11-21|[770
(1n* g |23-21 23-55 23-88 23-99 23.144 23-11-21 23.7-36 77-72 11-35.27
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PhD thesis of Ooguri-san:

so are the numbers Ny ; — 2N, 0.

F(r) = +2 +[1540¢° -+ 145545 + 11502¢° o)

+ 27830¢° + 61686¢" + 131100¢° + - - -

Iwanami Math Encyclopedia, 4th ed.:

61 B x 6
Moy (I)ZI g | 123 7-36 23-11 23-77 55-64 [E?J 2245 23-45 23-45(11-21|[770
O g | 23-21 2355 23-3323-144 231121 23-7-36 77-72 11-35-27
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PhD thesis of Ooguri-san:

so are the numbers Ny ; — 2N, 0.

F(r) = +2 +[1540¢° -+ 145545 + 11502¢° o)

+ 27830¢° + 61686¢" + 131100¢° + - - -

Iwanami Math Encyclopedia, 4th ed.:

61 B x 6
Moy (I)ZI g | 123 7-36 23-11 23-77 55-64 [E?J 2245 23-45 23-45(11-21|[770
O g | 23-21 2355 23-3323-144 231121 23-7-36 77-72 11-35-27

There is a correspondence!
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We wrote a paper saying that there is a correspondence,

and nothing more:

[(Experimental Mathematics, 20(1):91-96, 2011
Copyright © Taylor & Francis Group, LLC
ISSN: 1058-6458 print
DOI: 10.1080/10586458.2011.544585

e Taylor & Francis
Tyl Franis Group

Notes on the K3 Surface and the Mathieu Group My,

Tohru Eguchi, Hirosi Ooguri, and Yuji Tachikawa

CONTENTS

1. Introduction and Conclusions

2. Appendix: Data on M,

3. Appendix: M, and the classical geometry of K3
Acknowledgments

References

We point out that the elliptic genus of the K3 surface has a natural
decomposition in terms of dimensions of irreducible represen-
tations of the largest Mathieu group M. The reason remains a
mystery.

https://doi.org/10.1080/10586458.2011.544585

https://arxiv.org/abs/1004.0956
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We wrote a paper saying that there is a correspondence,
and nothing more:

| Experimental Mathematics, 20(1):91-96, 2011 |
Copyright © Taylor & Francis Group, LLC
ISSN: 1058-6458 print
DOI: 10.1080/10586458.2011.544585

https://doi.org/10.1080/10586458.2011.544585

https://arxiv.org/abs/1004.0956
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My contribution was literally only the suggestion
that we should look up the table.

Yes it was essential. But it was also totally trivial.
Eguchi and Ooguri could have looked up the same table in 1989.

This became one of the most cited papers of mine,
and both theoretical physicists and mathematicians still work on it.
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