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When Jaewon and Kazunobu invited me to this workshop in December,
I accepted to give a talk, without thinking too much.
But later I realized that this is mostly a SUSY QFT workshop,
and that I don’t have any suitable recent work to talk about.

So I decided to revive in February an unpublished long-dormant project
based on an idea I had long time ago (circa 2015?).
Since its inception I collaborated with many persons on this project:
Jenny Wong, Benjamin Assel,
Alessandro Tomasiello, Seyed Morteza Hosseini.

Luckily we made some progress since last month that I can report on.
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I have two introductions from distinct points of view:

• One from highly-supersymmetric Chern-Simons-matter theories

• Another from M5-branes on 3-manifolds

They somehow flow to the same endpoint...
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Highly-supersymmetric
Chern-Simons theories
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Supersymmetric Chern-Simons terms are available up to N=3.

Realizing N ≥ 4 was thought impossible.

Breakthrough in Autumn 2007 – Early summer 2008:

• N=8 [Gustavsson 0709.1260]
[Bagger-Lambert 0711.0955]

• N=4 [Gaiotto-Witten 0804.2907]
[Hosomichi-Lee-Lee-Lee-Park 0805.3662]

• N=6 [Aharony-Bergman-Jafferis-Maldacena 0806.1218]

• N=5 [Hosomichi-Lee-Lee-Lee-Park 0806.4977]

They used various approaches,
which in the end can be explained uniformly as follows:
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Supersymmetric Chern-Simons terms are available up to N=3.

Realizing N ≥ 4 was thought impossible.

Breakthrough in Autumn 2007 – Early summer 2008:

• N=8 [Gustavsson 0709.1260]
[Bagger-Lambert 0711.0955]

• N=4 [Gaiotto-Witten 0804.2907]
[Hosomichi-Lee-Lee-Lee-Park 0805.3662]

• N=6 [Aharony-Bergman-Jafferis-Maldacena 0806.1218]

• N=5 [Hosomichi-Lee-Lee-Lee-Park 0806.4977]

Contained ABJM as a special

case. If only they realized

N=6 enhancement...

They used various approaches,
which in the end can be explained uniformly as follows:
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Mechanism of the enhancement

Let us start with an exercise in 4d.

We can achieve N=2 with general G and R.

When R is the adjoint rep., the superpotential in N=1 language is

W = trΦ[A,B]

where Φ is from the vector multiplet and A,B form a hypermultiplet.

This has SU(3) acting on Φ, A, B.

This does not commute with SU(2)R of N=2 SUSY.

⇒ SUSY has to enhance, giving N=4 SYM.
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In 3d, we can achieve N=3 with general G and R.
The superpotential in N=2 language is

W =
∑
i

(trΦiµi −
ki

2
trΦ2

i )

where Φi is the adjoint scalar in the Chern-Simons supermultiplet
and µi is the moment map operator, constructed from the hypers.

As Φi’s have no kinetic term, they can be integrated out, giving

W ∝
∑
i

1

ki
trµ2

i .

When ki is chosen carefully, W can have
N=2 flavor symmetry not commuting with N=3 R-symmetry.

→ SUSY enhancement!
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If the final result has N=N SUSY,
we expect SO(N − 2) flavor symmetry in the N=2 formalism:

For example, in the ABJM case,
we expect to see SO(6 − 2) = SO(4) emerging.

8 / 49



Indeed, U(N)k × U(N ′)−k′ with two bifundamentals Ai, B
i has

W ∝
1

k
tr(AiB

i)2 −
1

k′ tr(B
iAi)

2

which simplifies, if k = k′, to

W ∝
1

k
trAiB

aAjB
bϵijϵab.

So we indeed see SU(2) × SU(2) = SO(6 − 2).

(I will be sloppy about the global structure of groups in this talk.)
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Enhancement to N=4 is in a sense simpler.

We couple N=3 Chern-Simons term to N=4 matter system.

In N=2 language, N=4 matter system has SO(2)F flavor symmetry,
under which the moment map operator µ has charge +1, say.
This is broken by the superpartner of the Chern-Simons term:

W =
∑
i

(trΦiµi −
ki

2
trΦ2

i ).

10 / 49



After integrating out Φi, we have

W ∝
∑
i

1

ki
trµ2

i︸ ︷︷ ︸
charge +2

.

The SO(2)F symmetry assigning charge +1 to µi is broken generically,

but it can happen that W ∝
∑
i

1

ki
trµ2

i = 0.

Then we see the enhancement back to N=4.
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The observation of Gaiotto and Witten was that,
for G with a half-hyper in R,

W ∝
∑
i

1

ki
trµ2

i = 0

is equivalent to G ⊕ R forming a super Lie algebra G.

• G is the bosonic part and R is the fermionic part of G.
• The ratio k1 : k2 : · · · is part of the structure constants of G.
• Rozansky-Witten twist of this N=4 theory is
the Chern-Simons theory of G. [Kapustin-Saulina 0904.1447]
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For example,

U(N |M) gives
U(N)k × U(M)−k with one bifundamental hyper.

(With two bifundamentals, it enhances further to N=6.)

OSp(N |M) gives
SO(N)k × Sp(M)−2k with one bifundamental half-hyper.

(With two bifundamentals, it enhances further to N=5.)

In both cases, the structure constant of the Lie algebras is unique
⇔ the ratio of Chern-Simons levels is fixed
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The case OSp(4|2) is special.

The gauge group is SO(4)× SU(2) = SU(2)1 × SU(2)2 × SU(2)3.

The half-hyper is in 4 ⊗ 2 = 21 ⊗ 22 ⊗ 23.

Denote it byQaiu as always. The condition for the SUSY enhancement is

W ∝
1

k1
tr(µ1)

2 +
1

k2
tr(µ2)

2 +
1

k3
tr(µ3)

2 = 0

where µ1,2,3 are the moment map operators for SU(2)1,2,3.
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Three moment map operators are

µ1
c
b = ϵcaµ1,ab , µ1,ab = ϵijϵuvQaiuQbjv,

µ2
k
j = ϵkiµ2,ij , µ2,ij = ϵabϵuvQaiuQbjv,

µ3
w
v = ϵwvµ3,uv , µ3,uv = ϵabϵijQaiuQbjv

and it turns out
tr(µ1)

2 = tr(µ2)
2 = tr(µ3)

2.

Therefore, the SUSY enhances to N=4 if and only if

W ∝
1

k1
tr(µ1)

2 +
1

k2
tr(µ2)

2 +
1

k3
tr(µ3)

2 = 0

i.e. if and only if
1

k1
+

1

k2
+

1

k3
= 0.

A weird condition!
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As I said, the ratio k1 : k2 : · · · is part of the structure constants of the
super Lie algebra.

The condition
1

k1
+

1

k2
+

1

k3
= 0

means that there is a one-parameter family of the ratio.

Therefore, the super Lie algebra OSp(4|2) comes
in a one-parameter family.

In fact, it is the only simple super Lie algebra which comes in a
continuous family.

Often denoted as D(2, 1;α).
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For us, k1,2,3 need to be integers. Are there integer solutions to

1

k1
+

1

k2
+

1

k3
= 0 ?

Yes,
1

p(p + q)
+

1

q(p + q)
−

1

pq
= 0,

for example.
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We can generalize. If you like class S theories, you know that
the trifundamental Qaiu of SU(2) is the TSU(2) theory.

More generally, there is a 3d N=4 theory known as
the TG theory with G3 symmetry.

It is obtained by putting 6d (2,0) theory of type G
on S2 with three full punctures, further compactified on S1.

It has moment map operators µ1,2,3 for G3 symmetry.

They satisfy
tr(µ1)

n = tr(µ2)
n = tr(µ3)

n

for arbitrary n.
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Consider, then, the 3d N=4 TG theory coupled with
N=3 Chern-Simons terms Gk1 × Gk2 × Gk3 .

Then, the condition for the enhancement to N=4 is

W ∝
1

k1
tr(µ1)

2 +
1

k2
tr(µ2)

2 +
1

k3
tr(µ3)

2 = 0

i.e.
1

k1
+

1

k2
+

1

k3
= 0.

This is (the simplest type of) the rarely-mentioned class
of 3d N=4 theory in the title.
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M5-branes on 3-manifolds

20 / 49



People love considering M5-branes on 3-manifolds,
starting from [Terashima-Yamazaki 1103.5748] and
[Dimofte-Gaiotto-Gukov 1108.4389]

What kind of 3d theories do we get?

Before that, how many supersymmetries do we have?

That’s the question I’d like to raise today.

(N.B. In the first day of the workshop, [Dongmin Gang] told us also about N=4

enhancement among these theories. There are some differences, though.
He talked about Tirred[M ] while I will talk about Tfull[M ], in his notation.)
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M5-branes on T 3 gives 3d N=8, obviously.

M5-branes on generic M3 can preserve 3d N=2.

Indeed, the holonomy of M3 is in SO(3)M .
The R-symmetry of the 6d theory is SO(5)R.
We turn on the R-symmetry background by embedding SO(3)M to

SO(3) × SO(2) ⊂ SO(5)R

Then SO(2) remains as a 3d R-symmetry, leading to 3d N=2.

22 / 49



As another big class, M5-branes on Σ2 × S1 gives 3d N=4.

The holonomy of Σ2 is in SO(2)Σ.
The R-symmetry of the 6d theory is SO(5)R.
We turn on the R-symmetry background by embedding SO(2)Σ to

SO(2) × SO(3) ⊂ SO(5)R.

Then SO(2) × SO(3) remains as a 3d R-symmetry.
(Note that SO(2) commutes with itself!)

But in 3d N=N superconformal theories, the R-symmetry is SO(N)R.
By carefully studying how the R-symmetry acts on the supercharges,
we find that

SO(2) × SO(3) ⊂ SO(3) × SO(3) ≃ SO(4)R,

i.e. we have 3d N=4.
Note that we only used the fact that the holonomy is in SO(2).
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How about the other cases?

To study these points, it is useful to recall

the classification of 3-manifolds

(N.B. [Dongmin Gang] also gave a nice review on the first day.)
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Prime decomposition

First step is to decompose 3-manifolds along shared S2.

Such decomposition is known to be essentially unique:

M = M1#M2# · · ·#Mn.
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Torus decomposition

Second step is to decompose prime 3-manifolds along shared T 2.

In this step, as there are multiple ways to fill T 2 in,
we keep each piece to have (multiple) torus boundaries.

This decomposition is not quite unique
but all the non-uniqueness comes from well-understood examples.
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A piece which cannot be further decomposed
by cutting along T 2 is called atoroidal.

Any 3-manifold
cut along S2

−−−−−−→ prime 3-manifolds

Prime 3-manifold
cut along T 2

−−−−−−→ atoroidal 3-manifolds

(Essential uniqueness of these decompositions was proved by 1979.)

What are atoroidal 3-manifolds, then?
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Geometrization

Atoroidal manifolds are either

• Seifert fibrations, or

• hyperbolic, i.e. H3/Γ.

Originally conjectured by Thurston in 1982.

Proved by Perelman in 2006 using the Ricci flow.
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So, to understand M5-branes on 3-manifolds requires a few steps:

• Understand M5-branes on Seifert fibrations.

• Understand M5-branes on hyperbolic manifolds.

And then

• Understand what happens when glued along T 2.

• Understand what happens when glued along S2.
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What happens when glued along S2

I haven’t see any paper about it.

As M5-branes on S2 give a gapped theory, nothing happens, presumably.

Some TQFT effects? I don’t know.
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What happens when glued along T 2

M5-branes on T 2 give N=4 SYM with gauge group G.
Then, a torus boundary means a G flavor symmetry for a 3d theory.

Gluing the two = gauging them with an SL(2,Z) wall,
which can be decomposed to

T k1ST k2S · · · T kn−1ST kn,

where T k: N=3 Chern-Simons term and S: N=4 T [G] theory.
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M5-branes on hyperbolic manifolds

Tons of papers!

Goes back to:

[Terashima-Yamazaki 1103.5748] for mapping tori

[Dimofte-Gaiotto-Gukov 1108.4389] for triangulations

Important refinements e.g. in:

[Chung-Dimofte-Gukov-Sułkowski 1405.3663]

[Gang-Yonekura 1803.04009]

This is not the place to review them.
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M5-branes on Seifert fibrations

Basically determined in a series of works, e.g.

[Gadde-Gukov-Putrov 1306.4320]
[Pei-Ye 1503.04809]
[Gukov-Putrov-Vafa 1602.05302]
[Gukov-Pei-Putrov-Vafa 1701.06567]
[Eckhard, Kim, Schäfer-Nameki, Willett 1910.14086]
[Cho-Gang-Kim 2007.01532]

But I have a bit more to say today.
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What is a Seifert fibration, anyway?

It is a slight generalization of an S1 fibration over a surface Σ,
where you allow singular fibers of the form

The 3d manifold is smooth, but the base Σ now has
singularities of the form C/Za.

(a can vary from a singular fiber to another singular fiber.)
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Another way to phrase the construction is: start from

and perform

at a number of points. Seifert fibrations of type

(g;
q1

p1
,
q2

p2
, . . . ,

qn

pn
).
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The corresponding 3d theory is therefore

So we can make it N=3, field theoretically.

I don’t understand this enhancement from the geometric point of view,
since the holonomy is generically SO(3), which leads to N=2.

And the original paper [Gukov-Putrov-Vafa 1602.05302]
didn’t mention the enhancement.
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More concretely, consider M5-branes on a Seifert of type

.

This leads to

.
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Now, let me point out something new.

The Seifert fibration of type

(g;
q1

p1
,
q2

p2
, . . . ,

qn

pn
)

is known to have SO(2) holonomy when∑ qi

pi
= 0,

although Seifert fibrations generically have SO(3) holonomy.

Why?
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Well, given a Seifert fibration M → Σ of type (g;
q1

p1
,
q2

p2
, . . . ,

qn

pn
),

we consider the following pull back:

M ′ M

Σ′ Σ

genuine S1 fibration Seifert fibration∏
pi cover

and the first Chern class of M ′ → Σ′ is

c1(M
′) = (

∏
pi)

∑ qi

pi
.

So, M is a Z∏
pi

shift-orbifold of S1 × Σ′ if∑ qi

pi
= 0.

Then, it is has SO(2) holonomy.
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Therefore, the theories

are N=4 when ∑ qi

pi
= 0.
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Let us come back to M5-branes on the Seifert of type

.

This led to

.
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We just learned that the Seifert manifold

has SO(2) holonomy iff ∑ 1

ki
= 0,

leading to N=4.
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And we already saw in the field theory introduction that

has the superpotential

W ∝
∑ 1

ki
tr(µi)

2 = (
∑ 1

ki
) trµ2

which vanishes iff ∑ 1

ki
= 0,

leading to N=4. Neat, isn’t it?
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The field theory argument can be extended to all theories

with ∑ qi

pi
= 0

by using the properties of the S-duality wall theory T [G]. click for details
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Geometrically Unexplained
Enhancements
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For example, consider

The superpotential is

W =
∑
i

(trµiΦi −
ki

2
trΦi

2 + trΦiµ
′
i).

Integrating out Φi, we get

W ∝ (
∑
i

1

ki
)(trµ2 + trµ′2) +

∑
i

1

ki
trµiµ

′
i.
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When
∑
i

1

ki
= 0, this theory ends up having W =

∑
i

1

ki
trµiµ

′
i.

We can now assign charge +1 to µi and charge −1 to µ′
i,

leading to N=4 enhancement.

For two M5-branes, this reduces to a particular case of
N=5 theory of [Hosomichi-Lee-Lee-Lee-Park 0806.4977].
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But geometrically, this is a mapping torus of a genus-2 surface over S1,
where we use Dehn twists around three necks to glue.

Nothing special happens when
∑ 1

ki
= 0, at far as I can see.
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Summary

I considered how many supersymmetries are realized
when we put M5-branes on 3-manifolds without hyperbolic parts.

From geometry, N=2 is expected generically,
with occasional enhancements to N=4.

From field theory, N=3 is expected generically,
with occasional enhancements to N=4.

Sometimes they agree; sometimes they don’t.
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Back-up slides
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More geometrically
understandable cases
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The field theory argument can be extended to all theories

with ∑ qi

pi
= 0

by using the properties of the S-duality wall theory T [G].

(The notations T [G] and TG are confusing. Please blame Davide.)
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The 3d N=4 theory T [G] implements the S-duality of 4d N=4 SYM:

As such, it has G × G symmetry, one acting on the Coulomb branch
and another acting on the Higgs branch.
Correspondingly, there are two moment map operators µC and µH .

We can perform N=4-preserving mass deformations

W = trMHµC + trMCµH .

This is known to affect the operators so that

tr(MH)n = tr(µH)n, tr(MC)n = tr(µC)n.
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This can be used to show the chiral ring relation

tr(µ1)
n = tr(µ2)

n = tr(µ3)
n

of the 3d N=4 TG theory, because this theory has the description

of three T [G] theories coupled together, with the superpotential

W =
∑
i

trΦµi,H

Then we have
tr(µi,C)n = trΦn

independent of i.
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Now, a Seifert fiber of type q/p has a 3d N=3 description

where ∥ is the T [G] theory and ki are connecting N=3 CS terms, and
the levels ki are determined by writing q/p as a continued fraction:

q

p
=

1

k1 −
1

k2 −
1

k3 − · · ·

.
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This part

has the superpotential

W = trΦ0(µC)1 + tr(µH)1Φ1 −
k1

2
tr(Φ1)

2

+ trΦ1(µC)2 + tr(µH)2Φ2 −
k2

2
tr(Φ2)

2

+ · · ·

+ trΦn−1(µC)n + tr(µH)nΦn −
kn

2
tr(Φn)

2.

We now integrate out Φi, and use

tr((µC)i)
2 = tr(Φi)

2 = tr((µH)i+1)
2.
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At the end of the day, we find

generates the superpotential

W ∝
q

p
tr(Φ0)

2.

• I have done only a very crude field theoretical analysis;
there are some gaps in the derivation.

• This is related to the fact that the (p, q) 5-brane is tilted by the factor p/q,
and the observation goes back to [Kitao-Ohta-Ohta hep-th/9808111].
They noticed that this implied a ‘fractional Chern-Simons level’ of p/q
and got confused.

57 / 49

http://arxiv.org/abs/hep-th/9808111


So, the theory

ends up generating

W ∝ (
∑ qi

pi
) tr(Φ0)

2.

Therefore the theory enhances to N=4 when∑ qi

pi
= 0.

go back
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