Black Hole Entropy in the presence of Chern-Simons terms

Yuji Tachikawa

School of Natural Sciences,
Institute for Advanced Study

based on hep-th/0611141,
to appear in Class. Quant. Grav.
Contents

1. Introduction

2. Black Hole Spacetime

3. Black Hole Spacetime in Higher Derivative Gravity

4. Derivation of the First law

5. Summary
• Classical General Relativity leads to
\[\frac{\kappa}{2\pi} \frac{\delta A}{4G_N} = \delta m - \Omega \delta J \]

• Semiclassical analysis identifies
\[T_H = \frac{\kappa}{2\pi} \]

• Very natural to identify
\[S = \frac{A}{4G_N} \]

and look for statistical explanation.
• Extremal charged black hole \sim D-branes

• Excitations can be counted, account for

$$S = \frac{A}{4G_N}$$

[Strominger-Vafa], [Maldacena-Strominger-Witten]
• Extremal charged black hole \sim D-branes

• Excitations can be counted, account for

$$S = \frac{A}{4G_N} + \cdots$$

[Strominger-Vafa], [Maldacena-Strominger-Witten]

• Also predicts subleading corrections.
Corrections to the area law

- Einstein-Hilbert
 \[\mathcal{L} = \sqrt{-g} \frac{R}{16\pi G_N} \]

- Area law
 \[S = \frac{A}{4G_N} \]
Corrections to the area law

- Einstein-Hilbert corrected:

\[\mathcal{L} = \sqrt{-g} \left(\frac{R}{16\pi G_N} + \frac{c}{2} R^2 + \cdots \right) \]

- Area law accordingly modified:

\[S = \frac{A}{4G_N} + 8\pi c \int_{\text{hor}} R_{rtrt} + \cdots \]
Corrections to the area law

- Einstein-Hilbert corrected:

\[
\mathcal{L} = \sqrt{-g} \left(\frac{R}{16\pi G_N} + \frac{c}{2} R^2 + \cdots \right)
\]

- Area law accordingly modified:

\[
S = \frac{A}{4G_N} + 8\pi c \int_{\text{hor}} R_{rtrt} + \cdots
\]

- Wald’s formula:

\[
S = -2\pi \int_{\text{hor}} \sqrt{-g} \frac{\delta \mathcal{L}}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd}
\]
String theory works

- Two ways to calculate corrections:
 - Microscopic: d.o.f. on the brane
 - Macroscopic: Wald’s formula

- Completely agrees!

[de Wit et al.][Ooguri-Strominger-Vafa]
String theory works

- Two way to calculate corrections:
 - Microscopic
 - d.o.f. on the brane
 - Macroscopic
 - Wald’s formula

- Completely agrees!

[de Wit et al.][Ooguri-Strominger-Vafa]

- In four dimensions.
Odd dimensions

- Black rings in 5d.
- Entropy correction:

<table>
<thead>
<tr>
<th>Microscopic</th>
<th>Macroscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>done</td>
<td>not yet</td>
</tr>
</tbody>
</table>

- Why?
Odd dimensions

- Black rings in 5d.
- Entropy correction:

<table>
<thead>
<tr>
<th>Microscopic</th>
<th>Macroscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>done</td>
<td>not yet</td>
</tr>
</tbody>
</table>

- Why? Wald’s formula isn’t applicable to gravitational Chern-Simons:

\[
\int F \wedge \text{tr } \Gamma \wedge R
\]
Odd dimensions

- Black rings in 5d.
- Entropy correction:

<table>
<thead>
<tr>
<th>Microscopic</th>
<th>Macroscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>done</td>
<td>not yet</td>
</tr>
</tbody>
</table>

- Why? Wald’s formula isn’t applicable to gravitational Chern-Simons:

\[
\int F \wedge \text{tr} \Gamma \wedge R
\]

Our aim today

Entropy correction from grav. CS.
Contents

1. Introduction

2. Black Hole Spacetime

3. Black Hole Spacetime in Higher Derivative Gravity

4. Derivation of the First law

5. Summary
2. Black Hole Spacetime

3. Black Hole Spacetime in Higher Derivative Gravity

4. Derivation of the First law

5. Summary
• Killing Horizon: $\xi^2 = 0$.

• Binormal

$$\epsilon_{ab} = \xi_a n_b - \xi_b n_a$$

• Surface gravity

$$\nabla_a \xi_b = \kappa \epsilon_{ab} + \cdots$$
• **Bifurcation Surface**
 \[\xi = 0. \]

• **Bifurcate horizon**: A pair of horizons which pass BS.
Hawking radiation

- Free field radiates at
 \[T_H = \frac{\kappa}{2\pi}. \]
- Unruh effect near B.S.
- Depends only on bg metric,
- Not quantum gravity per se.

\[\xi = 0 \]
\[\xi^2 = 0 \]

Yuji Tachikawa (SNS, IAS)
• Horizon cross section at finite t is the b.s.
Holonomy at B.S.

- At the B.S.,

\[\nabla_c \epsilon_{ab} = \kappa^{-1} \nabla_c \nabla_a \xi_b = \kappa^{-1} R_{abcd} \xi^d = 0. \]

\[\text{holonomy reduces to} \]

\[SO(D - 1, 1) \subset SO(1, 1)_N \times SO(D - 2) \]
Black Hole Thermodynamics

Zeroth law
\[\kappa \text{ constant on the horizon.} \]

First law
\[\frac{\kappa}{2\pi} \frac{\delta A}{4G_N} = \delta m - \Omega \delta J \]

Second law
\[A \text{ increases with time.} \]
3. Black Hole Spacetime in Higher Derivative Gravity
Higher derivative corrections

- **RG perspective**
 - Planck suppressed terms R^2, R^4 etc.

- Coefficients calculable in string compactifications

- Affects black hole solutions.
Conceptual problems

- Null dir. of $g_{ab} \neq$ maximal propagation speed.
- e.g. Field redefinition

$$g_{ab} \rightarrow g_{ab} + cR_{ab} + c'R_{g_{ab}} + \cdots$$

changes the ‘light cone’

- Physics should be invariant!
• Define the horizon using the light cone of g_{ab}.

• Suppose it has Killing, bifurcate horizon:

 under $g_{ab} \rightarrow g_{ab} + h_{ab}$,

 Bifurcation surface

 invariant, defined by $\xi^{a} = 0$

 Bifurcate horizon

 $\xi^{a}\xi_{a} \rightarrow g_{ab}\xi^{a}\xi^{b} + h_{ab}\xi^{a}\xi^{b}$.

 2nd term invariant under ξ

 \rightarrow zero by evaluating at B.S.

Hawking temperature

Evaluate $\kappa^{2} = |\nabla_{a}\xi^{b}|^{2}$ at B.S.

\rightarrow Christoffel drops off because $\xi^{a} = 0$.
Black Hole Thermo. in Higher Derivative Gravity

Zeroth law
\(\kappa \) constant on the horizon: assumption

First law
\[\frac{\kappa}{2\pi} S = \delta m - \Omega \delta J, \quad S \text{ given by } \text{Wald's formula} \]

Second law
Difficult to establish
Wald’s formula

Black Hole Entropy

\[S = -2\pi \int_{\text{hor}} \sqrt{-g} \frac{\delta \mathcal{L}}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd} \]

for \(\mathcal{L} = \mathcal{L}(g_{ab}, R_{abcd}, \nabla_e R_{abcd}, \cdots ; \phi, \cdots) \)

- It does not include gravitational Chern-Simons
 \[\ast \delta \mathcal{L} = \text{tr} \, \Gamma \wedge R^{2n-1} \]

- or Green-Schwarz type coupling
 \[\delta \mathcal{L} = \frac{1}{2} |H|^2 \quad \text{with} \quad H = dB + \text{tr} \, \Gamma \wedge R. \]
1. Introduction

2. Black Hole Spacetime

3. Black Hole Spacetime in Higher Derivative Gravity

4. Derivation of the First law

5. Summary
Notation

\(D \) space-time dimension

\(L(\phi) \) Lagrangian density as \(D \)-form

\(\phi \) collective symbol for the fields. \(g_{\mu\nu}, A_\mu, \ldots \)

\(\mathcal{L}_\xi \) Lie derivative by a vector field \(\xi \),

\[
\mathcal{L}_\xi \omega = (d\iota_\xi + \iota_\xi d)\omega.
\]

\(\delta_\xi \) Variation under diffeo. e.g.

\[
\delta_\xi \Gamma^a_b = \mathcal{L}_\xi \Gamma^a_b + d(U_\xi)^a_b
\]

where \((U_\xi)^a_b = \partial_b \xi^a\).
• Assumption by Wald:

$$\delta_\xi L(\phi) = \mathcal{L}_\xi L(\phi).$$

Cannot incorporate the CS.

• Today:

$$\delta_\xi L(\phi) = \mathcal{L}_\xi L(\phi) + d\Xi_\xi.$$

• Almost verbatim transcript of Wald’s original.
Covariant Hamiltonian Method

- EOM E_ϕ and symplectic potential Θ via

$$\delta L = E_\phi \delta \phi + d\Theta(\phi, \delta \phi)$$

- Θ pairs of ‘coordinate’ and ‘momenta’

$$L(\phi) = \frac{1}{2} \ast d\phi \wedge d\phi \quad \Theta = \ast d\phi \wedge \delta \phi$$

- Symplectic form given by

$$\Omega(\phi, \delta_1 \phi, \delta_2 \phi) = \delta_1 \Theta(\phi, \delta_2 \phi) - \delta_2 \Theta(\phi, \delta_1 \phi).$$
Lemma

- \(j \): a form constructed from
 - fields \(\phi \)
 - an external field \(\xi \)
- suppose \(j \) is closed on-shell for any \(\xi \).
- It is then exact on-shell. i.e.

\[
dj_\xi \simeq 0 \rightarrow j_\xi \simeq dQ_\xi.
\]

- \(\simeq \): equality on-shell.
Noether’s theorem

• Symmetry leads to conserved current:

\[j_\xi = \Theta(\phi, \delta_\xi \phi) - \iota_\xi L - \Xi_\xi \]

satisfies

\[dj_\xi \simeq 0 \]

• The lemma implies

\[j_\xi \simeq dQ_\xi, \quad \int_C j_\xi \simeq \int_{\partial C} Q_\xi. \]
Noether’s theorem

- Symmetry leads to conserved current:

\[j_\xi = \Theta(\phi, \delta_\xi \phi) - \iota_\xi L - \Xi_\xi \]

satisfies

\[dj_\xi \simeq 0 \]

- The lemma implies

\[j_\xi \simeq dQ_\xi, \quad \int_C j_\xi \simeq \int_{\partial C} Q_\xi. \]

i.e.

Global symmetry \quad \rightarrow \quad Conserved charges
Gauge symmetry \quad \rightarrow \quad Gauss law
Un-illuminating main part

- Define Π_ξ via
 \[\delta_\xi \Theta = \mathcal{L}_\xi \Theta + \Pi_\xi. \]
- Recall $\delta L = E_\phi \delta \phi + d\Theta$, $\delta_\xi = \mathcal{L}_\xi L + d\Xi_\xi$.
• Define Π_ξ via

$$\delta_\xi \Theta = \mathcal{L}_\xi \Theta + \Pi_\xi.$$

• Recall $\delta L = E_\phi \delta \phi + d\Theta, \quad \delta_\xi = \mathcal{L}_\xi L + d\Xi_\xi$.

• Calculating $\delta \delta_\xi L$ in two ways:

$$d\Pi_\xi \simeq \delta d \Xi_\xi \quad \rightarrow \quad \Pi_\xi - \delta \Xi_\xi \simeq d\Sigma_\xi.$$

$$\delta j_\xi = \delta \Theta(\phi, \delta_\xi \phi) - \iota_\xi \delta L - \delta \Xi_\xi$$

$$\simeq \delta \Theta(\phi, \delta_\xi \phi) - \delta_\xi \Theta(\phi, \delta \phi) + d\iota_\xi \Theta + \Pi_\xi - \delta \Xi_\xi$$

$$\simeq \Omega(\phi, \delta \phi, \delta_\xi \phi) + d(\iota_\xi \Theta + \Sigma_\xi).$$
• Define Π_ξ via
\[
\delta_\xi \Theta = \mathcal{L}_\xi \Theta + \Pi_\xi.
\]

• Recall $\delta L = E_\phi \delta \phi + d\Theta$, $\delta_\xi = \mathcal{L}_\xi L + d\Xi_\xi$.

• Calculating $\delta \delta_\xi L$ in two ways:
\[
d\Pi_\xi \simeq \delta d \Xi_\xi \longrightarrow \Pi_\xi - \delta \Xi_\xi \simeq d\Sigma_\xi.
\]
\[
\delta j_\xi = \delta \Theta(\phi, \delta_\xi \phi) - \nu_\xi \delta L - \delta \Xi_\xi
\]
\[
\simeq \delta \Theta(\phi, \delta_\xi \phi) - \delta_\xi \Theta(\phi, \delta \phi) + d\nu_\xi \Theta + \Pi_\xi - \delta \Xi_\xi
\]
\[
\simeq \Omega(\phi, \delta \phi, \delta_\xi \phi) + d(\nu_\xi \Theta + \Sigma_\xi).
\]

• Thus, for C_ξ with $\delta C_\xi = \nu_\xi \Theta + \Sigma_\xi$,
\[
\delta dQ'_\xi \simeq \Omega(\phi, \delta \phi, \delta_\xi \phi)
\]
where
\[
Q'_\xi = Q_\xi - C_\xi.
\]
Recap.

- $\delta dQ'_\xi \simeq \Omega(\phi, \delta \phi, \delta \xi \phi)$ means
 \[
 \int dQ'_\xi \text{ is the Hamiltonian generating } \xi.
 \]

- Let $\xi = t + \Omega \phi$ where
 - ξ Horizon generating Killing
 - t global time translation
 - ϕ angular rotation

Then

\[
\delta \int_{\text{hor}} Q'_\xi \simeq \delta \int_{\infty} Q'_t + \Omega \delta \int_{\infty} Q'_\phi.
\]
First Law

\[\delta \int_{\text{hor}} Q'_\xi \simeq \delta \int_{\infty} Q'_t + \Omega \delta \int_{\infty} Q'_\phi. \]

- \(E = \int_{\infty} Q'_t, \ J = \delta \int_{\infty} Q'_\phi. \)
- Taking the horizon at the bifurcation surface,

\[\int_{\text{hor}} Q'_\xi = \kappa \int_{\text{hor}} Q'_\xi \bigg|_{\xi \to 0, \nabla_a \xi_b \to \epsilon_{ab}} \]

- Then, define

\[S = 2\pi \int_{\text{hor}} Q'_\xi \bigg|_{\xi \to 0, \nabla_a \xi_b \to \epsilon_{ab}} \]

Result.

\[\frac{\kappa}{2\pi} \delta S = \delta E + \Omega \delta J. \]
3d Chern-Simons

- Start from $L_{CS} = \beta \text{tr}(\Gamma R - \frac{1}{3} \Gamma^3)$

 $\delta_\xi L_{CS} = \mathcal{L}_\xi L_{CS} - d(\beta \text{tr} dU_\xi \Gamma) \quad \Xi_\xi = -\beta \text{tr} dU_\xi \Gamma$

- Non-covariant part in Θ is $-\beta \text{tr} \Gamma \delta \Gamma$

 $\Pi_\xi = -\beta \text{tr} dU_\xi \delta \Gamma$

 $\Pi_\xi - \delta \Xi_\xi \simeq 0 \quad \Sigma_\xi = 0$

 $j_\xi = \Theta(\phi, \delta_\xi \phi) - \Xi_\xi + \cdots = 2\beta \text{tr} dU_\xi \Gamma + \cdots$

 $Q'_\xi = 2\beta \text{tr} U_\xi \Gamma + \cdots$

- $(U_\xi)^a_b = \partial_b \xi^a$.
3d Chern-Simons

- \(L_{CS} = \beta \text{tr}(\Gamma R - \frac{1}{3} \Gamma^3) \) \(\Rightarrow \) \(S_{CS} = 8\pi \beta \int_{\text{hor}} \Gamma_N \)

where \(\Gamma_N = -\epsilon^{\nu \mu} \Gamma_{\nu \rho} dx^\rho / 2 \).

- agrees with known corrections to BTZ.

- Naive application of Wald \(\Rightarrow 4\pi \beta \int_{\text{hor}} \Gamma_N \).
Chern-Simons in General Dimensions

- \(L_{CS} = \beta \ tr(\Gamma R^{2m-1} + \cdots) \)

\[S_{CS} = 8\pi m\beta \int_{\text{hor}} \Gamma_N R_N^{2m-2} \]

- Recall

\text{Holonomy at the bifurcation surface} \quad = \quad SO(1,1)_N \times SO(D - 2)

- Entropy correction = CS of the normal bundle!
1. Introduction

2. Black Hole Spacetime

3. Black Hole Spacetime in Higher Derivative Gravity

4. Derivation of the First law

5. Summary
Summary

- Spacetime with black holes reviewed.
- Entropy correction from the grav. CS.
Summary

• Spacetime with black holes reviewed.
• Entropy correction from the grav. CS.

Outlook – Need application!

• Black rings. – working on it with friends.
• 7d black holes. – idea wanted.

\[
\text{tr } \Gamma \wedge R^3 \longrightarrow \int_{\text{hor}} \Gamma_N \wedge R^2_N
\]