Thesis Committee

I have served as a committee member for the following M.S./Ph.D. thesis defenses. (★ = I am the chair of the committee.)

Ph.D.

FY2024

  1. 野下 剛★(NOSHITA Go), Gauge Origami and BPS/CFT correspondence (ゲージ折紙とBPS/CFT対応),物理学専攻

FY2023

  1. 小林健太,Elliptic genera of complete intersection Calabi–Yau 17-folds in F4-Grassmannians (F4 型グラスマン多様体内の17 次元完全交叉カラビ・ヤウ多様 体の楕円種数),数理科学専攻
  2. 筒井勇樹, Graded modules associated with permissible C∞-divisors on tropical manifolds(トロピカル多様体上の可容C∞ 因子に付随した次数付き加群),数理科学専攻

FY2021

  1. Roland Bittelston, Integrability from Chern-Simons Theories, University of Cambridge
  2. Matteo Sacchi, Aspects of dualities and symmetry enhancements in three and four dimensions, University of Milan-Bicocca

FY2020

  1. 中塚成徳★, Feigin-Semikhatov conjecture and its applications (Feigin-Semikhatov 予想とその応用),数理科学専攻
  2. 森𦚰湧登★, Two-dimensional conformal field theory, current-current deformation and mass formula (二次元共形場理論のカレントカレント変形と重み公式),数理科学専攻
  3. 菅野 恵太(KANNO Keita), Minkowski Flux Vacua on CM-type K3 ×K3 Orbifolds and their Particle Physics Implications (CM型 K3 ×K3 オービフォルド上のミンコフスキーフラックス真空解と素粒子物理への示唆), 物理学専攻

FY2016

  1. Ilmar Gahramanov, Superconformal indices, dualities and integrability, Humboldt-Universität zu Berlin

M.S.

FY2024

  1. 熊谷晃希★, Constructions of Vertex Algebras and their Modules of from Prefactorization Algebras(前因子化代数による頂点代数およびその加群の構成), 数理科学専攻
  2. 原田明★, 境界付き3次元多様体におけるスピン構造の離散幾何学,数理科学専攻
  3. 福嶋 拓海(FUKUSHIMA Takumi), Systematic approach to fractons and multipole conservation in generalized gauge theory (一般化ゲージ理論におけるフラクトンと多重極子保存への系統的アプローチ),物理学専攻
  4. 法橋 顕広(HOKKYO Akihiro), Universal Upper Bound on Work Extractable from Quantum Many-Body Systems (量子多体系から取り出せる仕事の普遍的上界),物理学専攻

FY2022

  1. 上村 宗一郎★, On the volume conjectre for the quantum invariant of 3-manifolds based on the Teichmüller TQFT (Teichmüller TQFT に基づく3 次元多様体の量子不変量に関する体積予想について), 数理科学専攻

Last modified on Tuesday, 14-Jan-2025 04:39:20 JST
Copyright © 2002--2025 by Masahito YAMAZAKI. All rights reserved.