Quantum Field Theory II
U. Tokyo undergraduate/graduate course, 2016 autumn semester
Objectives
The second course on Quantum Field Theory.
Tree-level computations and path integral are the two major materials to be covered in this course. We will also discuss bound states, low-energy effective theory and unitarity along the way.
Prerequisite: equivalent of QM III (2nd quantization), QFT I (free field quantization) and Quantum Optics (photon quantization, atomic transition)
Hours and Rooms:
Mondays 14:55--16:40 at room 207, Rigakubu 1 Goukan (Hongo Campus)
Office hour:
Mondays 16:40--17:40 at room 207, or 903, the same as above.
Instructor: Taizan Watari,          
Kavli IPMU, Kashiwa Campus
TA:           Nozomu Kobayashi,   Kavli IPMU, Kashiwa campus
Language:
primarily in Eniglish, with occasional summary provided in Japanese.
Questions in Japanese are also welcome during the class.
Announcement:
               
(1) All the homework problems will be posted here.
               
(2) Note the change in the language policy (since Oct. 3).
               
(4) Homework problems E-1, E-2, ....., E-6 are now posted below. (Nov. 27)
               
(5) Homework submission deadline: Jan 30 (Mon), until the end of the office hour.
Lecture Notes and Homework Problems:
(see general instruction on homework problems)
Sep. 26: note-01
hw-01
introduction, S-matrix, decay rate, cross section
                    
                    
[4.5, [W-I 3.1, 3.2]]
Oct. 03: note-02
hw-02
LSZ formula, spectral representation
                    
                    
[4.2--4.4, 4.6--4.8, 7.1, 7.2, [W-I 4.3, 10.7]]
Oct. 17: note-03
-----
Feynman rule, loop expansion // vector field propagator, e+e- to mu+mu-
                    
                    
[3.2, 3.3, 3.5, 4.3, 4.4, 4.6--4.8, [W-I 6., 8.], 5.1]
                    
                    
[For section 2.4 of the lecture note, see [LB 2.3, 2.5, 3.3], [K 2.1--2.7], [AS 7., 11.] and hw E-2, E-3]
Oct. 24: note-04
hw-04
e+e- to mu+mu-: unpolarized (high energy, threshold), polarized
                    
                    
[5.1--5.3]
Oct. 31: note-05
hw-05
crossing symmetry, t-channel 2to2, non-relativistic limit, Mott scattering, LS coupling
                    
                    
[5.4]
Nov. 07: note-06
-----
Compton/Thomson scattering // Bethe-Salpeter equation
                    
                    
[5.5, [Ni 3.4, 3.5], [LL4 125], [T 10]]
Nov. 14: note-07
hw-07
Bethe-Salpeter equation, fine structure, hyperfine structure, Lamb shift
                    
                    
[[LL4 125], [T 10], [LL4 33, 34], [Ni 1.10], [LL4 123], 7.5, Wikipedia]
Nov. 21: note-08
hw-08
atomic transition // partial wave unitarity
                    
                    
[??, [W-I 3.6--3.8]]
Nov. 28: note-09 -----
optical theorem // low-energy effective theory //
                    
                    
[7.3]
Dec. 05: note-10 -----
path integral formulation of quantum mechanics
                    
                    
[[FH 3, 8], [Na 2.1], [AS 3.2], 9.1]
Dec. 12: note-11
hw-11
path integral for a 2-state (fermionic) system, and for QFTs
                    
                    
[[Na 2.3; 2.2], [AS 4.2], 9.5, 9.2, 9.3, [LB 5.1, 6.1]]
Dec. 19: note-12
-----
free energy, effective action
                    
                    
[11.3-5, 16.6, [W-II 16.1-3, 21.6]]
Dec. 26: note-13
hw-13
thermal field theory (imaginary time formalism)
                    
                    
[8, 9.2, 9.5, [LB 2.1, 2.6, 3.1]]
Jan. 16: note-14
hw-14
coarse graining, real time (Keldysh) formalism //
                    
                    
[[LB, K (see Refs. for the week 3)], [hw E-2]]
Jan. 23: note-15
-----
1-loop computation (anomalous magnetic moment) //
                    
                    
[6.2, 6.3]
Jan. 30: note-16
-----
a bonus track: Borel resummation
                    
                    
[[W-II 20.7], [AS 5.1], arXiv:1403.1277]
Advanced homework problems:
D-1, D-2, D-3 and
E-1, ..., E-6.
Materials that this course did not cover pdf
numbers in [     ] are the relevant sections in textbooks and
references. When the textbooks or references are not specified, that is
[PS] below.
Textbooks and References:
This course is not based on a specific textbook.
I often refer to the following textbooks, though, when I prepare for lectures:
[PS] M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory,
[LL4] V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quantum Electrodynamics,
[W-I, II] S. Weinberg, The Quantum Theory of Fields volume I and II.
Other references:
[LB] M. Le Bellac, Thermal Field Theory,
[K] A. Kamenev, Field Theory of Non-Equilibrium Systems,
[AS] A. Altland and B. Simons, Condensed Matter Field Theory,
[T] Yasushi Takahashi, 物性研究者のための場の量子論 II,
[Ni] Kazuhiko Nishijima, 相対論的量子力学,
[FH] R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals,
[Na] Naoto Nagaosa, Quantum Field Theory in Condensed Matter Physics (物性論における場の量子論),
Plan of the progress
1. introduction
2. S-matrix etc., loop expansion: [2 weeks]
3. tree-level scattering processes: [3 weeks]
4. bound states: [2 weeks]
5. unitarity: [1 week]
6. low-energy effective theory: [1 week]
7. path integral: [5 weeks]
8. introduction to 1-loop computation: [1 week]
Grading Scheme:
Letter grading [ excellent, good, OK or fail ] based on reports.
All the homework problems will be posted here.
Each homework problem is in either one of categories A, B, C, D and E, and
you will pass (excellent, good or OK) if
1 x #[A] + 1.5 x #[B] + 2 x #[C] + 4 x #[D] + 9 x #[E] is 9 or larger.
Submission: QFT II report box at the 2F Physics Administration Office.
When submitting your report to a post at the door of the admin. office, remember to write "QFT2" at the head of your report.
Electronic submission: to the e-mail address announced in the classroom.
Make sure that you receive an automatic reply.
Attachment files are not opened, so this option is only for Category [A] problems where several lines of sentences are enough.
I ask that the Subject line is written as "Date of a relevant lecture" "student ID" [example: Sep 26 ss921456]
Submission deadline: Jan 30 (Mon), until the end of the office hour.
updated on December 12, 2016.